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Abstract. We investigate the class of rings over which every finitely

generated flat right module is projective.

1. Introduction

A classical theorem of Bass states that every flat right module over a

ring R is projective if and only if R is left perfect. It seems natural to ask,

when, more generally, every finitely generated flat right module over R is

projective. We refer to rings with this property as right S-rings, since the

answer to this question was first given by Sakhajev. His results date back to

the 70s (cf. [15]). The first proof in English, however, appeared only recently

in Facchini, Herbera, and Sakhajev [6].

Examples of right S-rings are right noetherian rings, since over such rings

every finitely generated right module is finitely presented and, over any ring,

every finitely presented flat module is projective. It follows from another

result of Bass, that every semiperfect ring is a right and left S-ring.

A crucial theorem in [6] says that a ring R is a right S-ring if and only if

every sequence A1, A2, . . . of n× n matrices over R, such that Ai+1Ai = Ai

for every i, eventually consists of idempotents generating the same principal

right ideal in the matrix ring Rn. We say the sequence converges in this

case.

Using this characterization we refresh old and prove new results on right

S-rings. For instance, the class of right S-rings is closed under Morita

equivalence, under finite direct products, and under subrings. It follows

from the latter that every right Ore domain (in fact, any nonsingular ring

of finite Goldie dimension) is a right and left S-ring, and so is any free
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associative algebra over a field. Nevertheless there are domains that are

neither right nor left S-rings. See Section 3 for all this.

From [6] it follows that we may assign to each sequence A1, A2, . . . as

above a projective right module P such that this sequence converges if and

only if P is finitely generated. Using this we prove that every ring with right

Krull dimension is a right and left S-ring. Further, a triangular matrix ring

R is a right S-ring if and only if each diagonal component of R is a right

S-ring. See Propositions 5.8 and 5.9.

The most powerful reduction from matrices to elements is due to Vascon-

selos [17]. We reformulate his result as follows: a commutative ring R is an

S-ring if and only if every sequence a1, a2, . . . of elements (as opposed to

matrices) of R with ai+1ai = ai converges to an idempotent. Using this we

prove, in Section 7, that every commutative ring of Goldie dimension one is

an S-ring.

Endo [3] proved that a commutative ring is an S-ring if its localization

with respect to the set of non-zero divisors is a semilocal ring, and verified

the converse in some particular cases. We give an example showing that this

converse is not true in general, see Example 7.8 below.

The main question that remains open is the symmetry of the concept of

S-ring: is every right S-ring a left S-ring? (Cf. Question 3.9 below.) We

give an affirmative answer in the cases of exchange rings, semihereditary

rings, and semilocal rings, see Proposition 4.9, 4.10, and 6.4, respectively.

We thank Dolors Herbera for acquainting us with [6], to which our work—

though largely independent—is tightly related. We found some overlap in

the next, introductory, section unavoidable but do believe that our paper

may serve as useful complementary reading. Last nut not least we owe

thanks to the referee for his patience and a number of useful comments

improving the representation of the paper.

2. a-sequences

Let R be a ring. A sequence ⟨a⟩ = ⟨a1, a2, . . . ⟩ of elements of R is said to

be a right a-sequence if ai+1ai = ai for every i = 1, 2 . . . . A trivial instance

of this is obtained when e = e2 ∈ R is an idempotent: then ⟨ē⟩ = ⟨e, e, . . . ⟩
is a right a-sequence. In particular, ⟨0̄⟩ and ⟨1̄⟩ are right a-sequences.
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We say that two a-sequences ⟨a⟩ and ⟨b⟩ are equivalent, written ⟨a⟩ ∼ ⟨b⟩,
if ai = bi for all but finitely many i.

We collect some basic properties of a-sequences.

Lemma 2.1. Let ⟨a⟩ be a right a-sequence.

(1) If ai is right invertible, then ak = 1 for every k > i; in particular

⟨a⟩ ∼ ⟨1̄⟩.
(2) If 1− ai is left invertible, then ak = 0 for every k < i. In particular

this is the case if ai is nilpotent, or ai ∈ Jac(R).

Proof. (1) Let aib = 1 for some b ∈ R. Multiplying ai+1ai = ai by b on the

right, we obtain ai+1 = 1. Then ai+2ai+1 = ai+1 yields ai+2 = 1, and the

assertion follows by induction.

(2) Writing aiai−1 = ai−1 as (1− ai)ai−1 = 0 we conclude that ai−1 = 0.

Then ai−2 = ai−1ai−2 = 0·ai−2 = 0, and the first part of the assertion follows

by induction. For the second it remains to notice that if ai is nilpotent, or

ai ∈ Jac(R), then 1− ai is invertible.

If ai is nilpotent, or ai ∈ Jac(R), then 1− ai is invertible. �

Over domains or local rings a-sequences have a very simple form.

Lemma 2.2. Let ⟨a⟩ ̸= ⟨0̄⟩ be a right a-sequence over a ring R.

(1) If R is a domain, then ⟨a⟩ is of the form ⟨0, . . . , 0, r, 1, 1, . . . ⟩, where
0 ̸= r ∈ R;

(2) If R is local, then ⟨a⟩ is of the form ⟨0, . . . , 0, r, s, 1, 1, . . . ⟩, where

0 ̸= r ∈ R, and sr = r.

Clearly any such sequence ⟨a⟩ is a right a-sequence.

Proof. (1) Let r = ai be the first nonzero element of ⟨a⟩. We rewrite the

equality ai+1ai = ai as (1 − ai+1)ai = 0, i.e. (1 − ai+1)r = 0. Since R is a

domain, and r ̸= 0, it follows that ai+1 = 1. But then by Lemma 2.1, ak = 1

for every k > i.

(2) As above we have (1 − ai+1)r = 0. If ai+1 ∈ Jac(R), then 1 − ai+1

is invertible, hence r = 0, a contradiction. Otherwise, since R is local,

ai+1 = s is invertible, and sr = r. By Lemma 2.1 we obtain ak = 1 for every

k > i+ 1. �
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Next we show that every right ⟨a⟩-sequence leads to an ascending chain

of right ideals of the ring (whence the notation ‘a’ ).

Lemma 2.3. Let ⟨a⟩ be a right a-sequence over a ring R. Then

(1) akai = ai for every k > i;

(2) a1R ⊆ a2R ⊆ . . . is an ascending chain of right ideals of R;

(3) if ak ∈ aiR for some k > i, i.e., aiR = akR, then ak is an idempo-

tent;

(4) if e ∈ R is a central idempotent, then ⟨a⟩e = ⟨a1e, a2e, . . . ⟩ is a right

a-sequence.

Proof. (1) (Cf. [6, Proof of L. 3.1]). By induction on k − i ≥ 1. The initial

step k − i = 1, i.e. k = i+ 1, follows from the definition.

Now let k − i > 1. By induction hypothesis akai+1 = ai+1. Then

akai = ak(ai+1ai) = (akai+1)ai = ai+1ai = ai .

(2) readily follows from ai+1ai = ai.

(3) (cf. [6, L. 3.1]). Let ak = aig for k > i and some g ∈ R. Multiplying

by ai on the right we obtain akai = aigai. But akai = ai by (1), hence

ai = aigai. Thus aig = ak is an idempotent.

(4) Since e is central, ai+1e · aie = ai+1aie = aie. �

We say that a right ⟨a⟩-sequence converges (to the right ideal akR) if the

corresponding ascending chain of right ideals of R stabilizes at akR.

The following is obvious and well known.

Remark 2.4. Let e, f be idempotents of a ring R. Then eR ⊆ fR if and

only if fe = e. Therefore eR = fR if and only if fe = e and ef = f .

Next we show that every convergent right a-sequence eventually consists

of idempotents.

Lemma 2.5. A right a-sequence ⟨a⟩ converges if and only if there is an

index k such that ai = ei is idempotent for every i > k and ei · ej = ej for

all j > i > k.

Proof. Both direction follows from Remark 2.4.

For less obvious one, let akR = ak+1R = . . . . By Lemma 2.3, every ai =

ei, i > k is an idempotent. Now eiej = ej (j > i > k) by Remark 2.4. �
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More can be said in the commutative case: every convergent a-sequence

is eventually constant.

Lemma 2.6. Let ⟨a⟩ be a convergent right a-sequence over a ring R all of

whose idempotents are central. Then ⟨a⟩ ∼ ⟨ē⟩ for some idempotent e ∈ R.

Proof. By Lemma 2.5, there is a k such that every ai = ei, i > k is an

idempotent, and eiej = ej for all j > i > k. Further, by the definition of

a-sequence, ejei = ei. Then ei = ejei = eiej = ej for all i, j > k. �

Now we dualize the notion of right a-sequence and collect the correspond-

ing properties in a lemma, whose proof we omit, since it is similar to the

corresponding proofs for a-sequences.

A sequence ⟨b⟩ = ⟨b1, b2, . . . ⟩ of ring elements is said to be a left d-sequence

if bi+1bi = bi+1, i = 1, 2, . . . . We collect properties corresponding to those

of Lemmas 2.1 and 2.3 in a lemma, whose proof we omit, since it is dual to

the ones above.

Lemma 2.7. Let ⟨b⟩ be a left d-sequence over a ring R.

(1) If bi is left invertible, then bk = 1 for every k < i.

(2) If 1− bi is right invertible, then bk = 0 for every k > i; in particular

⟨b⟩ ∼ ⟨0̄⟩. This is the case, for instance, when bi is nilpotent or

bi ∈ Jac(R).

(3) bkbi = bk for every k > i.

(4) Rb1 ⊇ Rb2 ⊇ . . . is a descending chain of left ideals of R.

(5) If bi ∈ Rbk for k > i, i.e. Rbi = Rbk, then bi is an idempotent.

(6) If e ∈ R is a central idempotent, then ⟨b⟩e = ⟨b1e, b2e, . . . ⟩ is a left

d-sequence.

In particular, any left d-sequence leads to a descending chain of left ideals,

and we can dually define convergence of such a sequence by demanding that

this chain stabilize. The following lemma then corresponds to Lemmas 2.5

and 2.6, and we again omit the proof.

Lemma 2.8. Let ⟨b⟩ be a left d-sequence over a ring R.

(1) ⟨b⟩ converges if and only if there exists an index k such that bi = fi

is an idempotent for every k > i, and fifj = fi for all j > i > k.
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(2) If ⟨b⟩ converges and all idempotents of R are central, then ⟨b⟩ ∼ ⟨ē⟩
for some idempotent e ∈ R.

The following exhibits a useful connection between a-sequences and d-

sequences.

Lemma 2.9. ⟨a⟩ is a right a-sequence if and only if ⟨1 − ai⟩ is a left d-

sequence.

Proof. Let bi = 1− ai. If ⟨a⟩ is a right a-sequence, then

bi+1bi = (1− ai+1)(1− ai) = 1− ai+1 − ai + ai+1ai = 1− ai+1 = bi+1 .

Thus ⟨b⟩ is a left d-sequence. The proof of the converse is similar. �

Note that any idempotent e ∈ R gives rise to a right a-sequence ⟨ē⟩ and
a left d-sequence ⟨1− e⟩.

Lemma 2.10. A right a-sequence ⟨a⟩ converges if and only if the left d-

sequence ⟨1− ai⟩ does.

Proof. Suppose that ⟨a⟩ converges. By Lemma 2.5 we may assume that each

ai = ei is an idempotent such that eiej = ej and ejei = ei for all i < j.

Then 1− ei = fi is an idempotent. If i < j then

fifj = (1− ei)(1− ej) = 1− ei − ej + eiej = 1− ei = fi ,

and also

fjfi = (1− ej)(1− ei) = 1− ej − ei + ejei = 1− ej = fj .

R(1− ai) = R(1− aj) follows.

The converse is dual and left to the reader. �

To conclude this section we state some results that connect the behavior

of these sequences with projectivity—the original topic of interest.

Fact 2.11. [6, L. 3.1] Let ⟨a⟩ be a right a-sequence over a ring R. Then

the right ideal P⟨a⟩ =
∑∞

i=1 aiR is a projective right R-module. Further,

⟨a⟩ converges if and only if P⟨a⟩ is finitely generated (hence generated by an

idempotent ak).

The following result can be easily derived from [6, Proof of Prop. 3.5].
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Fact 2.12. Let R be a ring. Then the following are equivalent.

(1) Every cyclic flat right R-module is projective.

(2) Every right a-sequence over R converges.

(3) Every left d-sequence over R converges.

We call a ring R a right S-ring, if every finitely generated flat right R-

module is projective. The corresponding matrix version of the previous

result characterizes such rings.

Fact 2.13. [6, Prop. 3.5] Let R be a ring. Then the following are equivalent.

(1) R is an S-ring.

(2) For each n, every right a-sequence over the ring Rn (of n×n matrices

over R) converges.

(3) For each n, every left d-sequence over Rn converges.

3. Examples

First we prove that the class of right S-rings is closed under taking sub-

rings, which yields a rich supply of examples.

Lemma 3.1. Let R be a subring of a ring T (where the units of R and T

need not be the same). If T is a right S-ring, then R is a right S-ring.

Proof. If the units of R and T are the same, we may use the following: if

M is a finitely generated flat R-module such that M ⊗R T is a projective

T -module, then MR is projective. But, even in this case, it is instructive to

see a proof using the above criterion.

By Fact 2.13, it suffices to prove that every right ⟨a⟩-sequence over Rn

converges. Since T is a right S-ring, ⟨a⟩ converges over Tn. By Lemma 2.10,

we may assume that every ai = ei is an idempotent such that eiej = ej and

ejei = ei holds for all j > i. But then eiRn = ejRn for all i, j, hence ⟨a⟩
converges over Rn. �

Example 3.2. Since the free algebra A = k⟨X⟩ over a field k, where X is

a set of non-commuting variables, is embeddable in a skew field, A is a left

and right S-ring.

From Fact 2.12 and Lemma 2.2 it follows that every cyclic flat module over

a domain is projective. We can do better if the domain is also (one-sided)
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Ore, since such domains are embedded in a skew field (which obviously is

an S-ring).

Example 3.3. Every right Ore domain R is a right and left S-ring.

In fact, we can extend this to a wider class of rings.

Example 3.4. Let R be a right nonsingular ring of finite right Goldie di-

mension. Then R is a right and left S-ring.

Proof. Since R is right nonsingular, it is embedded in its right maximal

quotient ringQ. Since R is of finite right Goldie dimension, Q is a semisimple

artinian ring by [11, 13.4]. Thus R is a right and left S-ring by Lemma 3.1.

�

Next we see that the Ore condition cannot be entirely dropped in the

above.

Example 3.5. Let k be a field, and let R be the (noncommutative) k-algebra
with generators x, y, u, v, x′, y′, u′, v′ and the relation(

x y

u v

)
·

(
x′ y′

u′ v′

)
=

(
1 0

0 1

)
Then R is neither a right nor a left S-ring.

Proof. Shepherdson [16] proved that R is a domain which is not stably finite

(see also [11, §1.1, Exercise 18]). By Corollary 4.8 below, R is neither a right

nor a left S-ring. �

The next example was suggested to us by D. Herbera.

Example 3.6. There is a domain R that is, though a left and right S-ring,

not embeddable in a skew field (and hence not Ore).

Proof. By [5, Example 5.7] there is a hereditary semilocal domain R which

is embeddable in a simple artinian ring R′ (of length 2), but not in a skew

field. Since R′ is a left and right S-ring, R is a left and right S-ring by

Lemma 3.1. �

For the following, note that semiperfectness is a left-right symmetric prop-

erty of rings generalizing that of (one-sided) perfectness.
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Example 3.7. (Bass, see also [11, §2.4, Exercise 21])

Every semiperfect ring R is a right and left S-ring.

Proof. (with Ivo Herzog). Let M be a finitely generated flat module over

R. By semiperfectness, M has a projective cover c : P → M (cf. [11,

Proposition 24.12]). Then the kernel K is a pure small submodule of the

projective module P . The assertion will follow once we show K = 0. For

this we may as well assume (by adding an appropriate direct summand)

that P is free, which allows us to use [10, Theorem 4.23] as follows. Given

any k ∈ K, there is an endomorphism f of P fixing k whose image is in

K. Then k ∈ ker(1− f). Since c(1− f) = c, as is easily verified, properties

of the projective cover (cf. [11, Proposition 24.10]) force the endomorphism

(1− f) to be an automorphism, hence ker(1− f) = 0. But then k = 0 and

therefore K = 0, as desired. �

We conclude this section with two more preservation properties and an

open question.

Lemma 3.8.

(1) The property of being a right S-ring is preserved under Morita equiv-

alence.

(2) A finite direct product of rings, R =
∏n

i=1Ri, is a right S-ring if

and only if each Ri is a right S-ring.

Proof. (2) is obvious so as (1), for being flat, being finitely generated, and

being projective are Morita invariant properties. �

Lemma 4.5 below shows that the class of right S-rings is not closed under

infinite direct products (as any such ring would contain an infinite set of

orthogonal idempotents).

Question 3.9. Is every right S-ring a left S-ring? (We do not even know

the answer for domains.)

We will answer this question by verifying symmetry in various particular

cases, see 4.9, 4.10, 6.4, below.
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4. S-rings via idempotents

Lemma 4.1. Let R be a ring with the a.c.c. on right annihilators of ele-

ments or the d.c.c. on left annihilators of elements. Then every a-sequence

eventually consists of idempotents.

Proof. Suppose that R has the d.c.c. on left annihilators of elements. Then

the ascending chain a1R ⊆ a2R ⊆ . . . gives rise to a descending chain of

left annihilators, annR(a1) ⊇ annR(a2) ⊇ . . . . By hypothesis, this chain

stabilizes, i. e., there is an i such that annR(ai) = annR(ak) for every k > i.

Now akai = ai implies 1−ak ∈ annR(ai) = annR(ak). Then (1−ak)ak = 0

shows that ak is an idempotent.

Analogously if R has the a.c.c. on right annihilators of elements, just

consider a left d-sequence ⟨b⟩ instead. �

The following proposition shows that over many classical rings at least

cyclic flat modules are projective.

Proposition 4.2. Let R be a ring with the a.c.c. on right annihilators of

elements or the d.c.c. on left annihilators of elements. Then every cyclic

flat right R-module is projective.

Proof. Otherwise there exists a divergent right a-sequence ⟨a⟩ over R. By

Lemma 4.1, we may assume that every ai = ei is an idempotent. Since ⟨a⟩
diverges, we may suppose that every inclusions eiR ⊂ ei+1R is proper. Note

that eiR is a right annihilator of 1− ei. Hence, if R has the a.c.c. on right

annihilators of elements, we obtain a contradiction. If R has the d.c.c. on

left annihilators of elements, we obtain a contradiction considering the de-

scending chain R(1− e1) ⊃ R(1− e2) ⊃ . . . . �

Corollary 4.3. Let R be a ring such that every ring Rn has the a.c.c. on

right annihilators of elements or the d.c.c. on left annihilators of elements.

Then R is a right S-ring.

Remark 4.4. The d.c.c. part of this is contained in [6, Cor. 3.6], and the

a.c.c. part in [18, Proposition 9]. However, the proofs of the three previous

results show that they hold true for rings with weaker chain conditions and

thus strengthen both of the cited results (with a uniform proof). Namely,
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all we used was the d.c.c. on left annihilators of right a-sequences or the

a.c.c. on right annihilators of left d-sequences.

Zhu, in fact, works with another a.c.c., the a.c.c. on right annihilators

of sequences of ring elements of the form b1, b2b1, b3b2b1, . . .. However, d-

sequences are clearly of this form, so his a.c.c. may be slightly stronger than

ours (on right annihilators of left d-sequences).

Note that Zhu’s a.c.c. is equivalent to the a.c.c. on right annihilators of

sequences of ring elements c1, c2, c3, . . . such that Rc1 ⊇ Rc2 ⊇ Rc3 ⊇ . . ..

The corresponding d.c.c. is that on left annihilators of sequences of ring

elements a1, a2, a3, . . . such that a1R ⊆ a2R ⊆ a3R ⊆ . . ., a d.c.c. that seems

to be slightly stronger than ours (on left annihilators of right a-sequences).

We are going to address Question 3.9 for the case of exchange rings and

for the case of semihereditary rings and show symmetry for these.

To this end we first establish the fact that S-rings are I-finite in the sense

that they contain no infinite set of orthogonal (nonzero) idempotents.

Lemma 4.5. If every cyclic flat right R-module is projective, then R is

I-finite.

Proof. Suppose that e1, e2, . . . is an infinite set of orthogonal idempotents

of R. Set ai = e1 + · · ·+ ei. Then

ai+1ai = (e1 + · · ·+ ei + ei+1)(e1 + · · ·+ ei) = e1 + · · ·+ ei = ai ,

hence ⟨a⟩ = ⟨a1, a2, . . . ⟩ is a right a-sequence. But aiai+1 = ai ̸= ai+1 hence,

by Lemma 2.5, ⟨a⟩ diverges. �

Corollary 4.6. If R is a right S-ring, then for every n, the ring Rn is

I-finite.

Proof. Since R is an S-ring, Rn is an S-ring for every n. Now the result

follows from Lemma 4.5. �

Corollary 4.7. A von Neumann regular ring is a right S-ring if and only

if it is semisimple artinian (if and only if it is a left S-ring).

This also follows from the fact that every module over a von Neumann

regular ring is flat.

11



Recall that a ring R is called Dedekind finite if rs = 1 for r, s ∈ R implies

sr = 1. If the same property holds for every pair of n×nmatrices over R, the

ring R is called stably finite. Corollary 4.6 together with [11, Prop. 6.60(2)]

yields at once

Corollary 4.8. Every right S-ring is stably finite.

Now we are in a position to prove that for exchange rings (see e. g. [13])

the S-property is indeed left-right symmetric (cf. Question 3.9 above). Note

that the concept of exchange ring is itself left-right symmetric. A proper

subclass of that of exchange rings is the class of semiregular rings, i. e., rings

R such that R/ Jac(R) is von Neumann regular and whose idempotents

may be lifted modulo Jac(R). For example, endomorphism rings of pure-

injective modules are semiregular. More generally, Guil Asensio and Herzog

[7] proved that endomorphism rings of cotorsion modules are semiregular as

well.

Proposition 4.9. An exchange ring is a right S-ring if and only if it is

semiperfect (if and only if it is a left S-ring).

Proof. Right S-rings are I-finite by Lemma 4.5. But Camillo and Yu Hua-

Ping [1] proved that I-finite exchange rings are semiperfect. It remains to

apply Example 3.7. �

We conclude this section by showing that symmetry also holds for (one-

sided) semihereditary rings.

Proposition 4.10. A right semihereditary ring R is a right S-ring if and

only if Rn is I-finite for every n, if and only if it is a left S-ring. In this

case R is also left semihereditary.

Proof. If R is a right S-ring, Corollary 4.6 shows that every ring Rn is I-

finite.

Since R is right semihereditary, by [11, 7.63], the right annihilator of any

matrix in Rn is generated by an idempotent. So if, conversely, Rn is I-finite,

it has the a.c.c. on right annihilators of elements. Hence R is a right S-ring

by Corollary 4.3, this proving the first equivalence.
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On the other hand, by [12, Proposition 5.4.3], for I-finite rings semi-

hereditarity is a left-right symmetric property. So R is two-sided semihered-

itary. But then, since I-finiteness of Rn is left-right symmetric, the first

equivalence (on the other side) shows that it also is equivalent to the fact

that R is a left S-ring. �

5. Lifting the S-property

The following fact helps to left S-property modulo various (two-sided)

ideals. (Although the statement differs from that of the original lemma, it

is precisely what is roved there.)

Fact 5.1. [8, Proposition 2.1] Let P be a projective right module over an

arbitrary ring R. If I is a nil ideal such that P/PI is cyclic, then P is

cyclic.

Lemma 5.2. Let I be a nil ideal of a ring R such that every cyclic flat

right R/I-module is projective. Then every cyclic flat right R-module is

projective.

Proof. Let ⟨a⟩ be a right a-sequence over R. By Fact 2.11 it suffices to prove

that the projective right R-module P = P⟨a⟩ is finitely generated.

Since every cyclic flat right R/I-module is projective, the right a-sequence

⟨ā⟩ = ⟨ā1, ā2, . . . ⟩ over R/I converges. Hence the projective right R/I-

module P = P⟨ā⟩ is cyclic. But, P = P/PI, and so the previous fact implies

that P is also cyclic. �

It is not known if being nil passes over to matrices (in fact, this is equiv-

alent to Köethe’s conjecture), but being included in the prime radical does,

and so we may infer that the S-property can be lifted module (nil) ideals

contained in the prime radical.

Corollary 5.3. Let I be an ideal contained in the prime radical of a ring R

(e.g., any nilpotent ideal). If R/I is a right S-ring, then R is a right S-ring.

Now we know one can lift the S-property modulo the prime radical we

turn to the problem of lifting module the Jacobson radical. Here we have

only partial results, based on the following

13



Fact 5.4. [8, Lemma 2.4] Let P be a projective right module over an arbi-

trary ring R. If P/P Jac(R) is finitely generated and so is P/PI for every

prime ideal I, then P is finitely generated.

If, in the above proof, Fact 5.1 is replaced by this fact (from the same

paper), we at once obtain the next result. (Note that passing to matrix ring

is no problem.)

Proposition 5.5. Let every prime factor of the ring R be a right S-ring.

If R/ Jac(R) is a right S-ring, then R is a right S-ring.

Since, being embeddable is a semisimple artinian ring, a prime Goldie

ring is an S-ring, this readily yields

Corollary 5.6. Let every prime factor of the ring R be a right Goldie-ring

(this is the case, e.g., when R has a polynomial identity, in particular, when

R is commutative). If R/ Jac(R) is an S-ring, then R is an S-ring.

We are ready to give some more example of S-rings.

Example 5.7. Endomorphism rings of a right artinian modules are left and

right S-rings.

Proof. If R is the endomorphism ring of an artinian module M , then Rn is

the endomorphism of the artinian module Mn. So it suffices to prove that

every cyclic flat right or left R-module is projective.

By [4, Prop. 10.6] R contains a two-sided nilpotent ideal H such that

every chain of left annihilators of the ring R/H is uniformly bounded. Then

every chain of right annihilators of R/H is uniformly bounded. Hence, by

Proposition 4.2, every cyclic flat left or right R/H-module is projective, and

it remains to apply Lemma 5.2. �

It is easy to show (see the remark in the introduction) that every right

noetherian ring is a right S-ring. It turns out that it must be also a left

S-ring. In fact, more can be said.

Proposition 5.8. Any ring with right Krull dimension is a left and right

S-ring.

14



Proof. By [4, Thm. 7.21]

Let N = N(R) be the prime radical of R. By Corollary 5.3 it suffices to

prove that R/N is an S-ring. But by [4, Cor. 7.19], R/N is a semiprime

Goldie ring, hence R/N is embeddable into a semisimple artinian ring. It

remains to apply Lemma 3.1. �

Next we investigate when triangular matrix rings are S-rings.

Proposition 5.9. Let RMT be an R-T -bimodule, and let U =
(
R M
0 T

)
be a

triangular matrix ring. Then U is a right S-ring if and only if R and T are

right S-rings.

Proof. If U is a right S-ring, then R and T are right S-rings by Lemma 3.1.

Now assume that R and S are right S-rings. Note that N =
(
0 M
0 0

)
is a

nilpotent (of index 2) ideal of U such that U/N ∼= R ⊕ S. Hence we may

apply Corollary 5.3 (and Lemma 3.8). �

If M is an R-R-bimodule, then the ring {( r m
0 r ) | r ∈ R,m ∈ M} is called

trivial extension (of M).

Proposition 5.10. Let M be an R-R-bimodule. Then the trivial extension

of M is a right S-ring if and only if R is a right S-ring.

Proof. Similar to Proposition 5.9. �

6. L-rings

Following Zöschinger [19], a ring R is an L-ring, if it has the following

property. If P is a projective right R-module such that P/ Jac(P ) is finitely

generated, then P is finitely generated.

Zöschinger [19] proved that the property is two-sided. He also gave the

following characterization.

Fact 6.1. [19, Satz 2.3] The following are equivalent for any ring R.

(1) R is an L-ring.

(2) If F is a finitely generated flat right R-module such that F/F Jac(R)

is a projective right R/ Jac(R)-module, then F is projective.

Corollary 6.2. Every right S-ring is an L-ring.
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Lemma 6.3. Let R/ Jac(R) be a right S-ring. Then R is a right S-ring if

and only if R is an L-ring.

Proof. By Corollary 6.2 we need to prove that if R is an L-ring, then R is a

right S-ring.

By Fact 6.1 it suffices to check that F ′ = F/F Jac(R) is a projective

R′ = R/ Jac(R)-module for every finitely generated flat right R-module F .

Clearly F ′ is a finitely generated R′-module. Since F ′ = F ⊗R R′, this

R′-module is also flat. But R′ is a right S-ring, so F ′ is indeed projective. �

The symmetry of the property of being an L-ring allows us to prove

symmetry as addressed in Question 3.9 for the case of semilocal rings, i. e.,

rings R such that R/ Jac(R) is semisimple artinian. This is implicit also in

[6, Rem. 3.7].

Proposition 6.4. A semilocal ring is a right S-ring if and only if it is a

left S-ring.

Proof. Since R is a right S-ring, R is an L-ring by Corollary 6.2. Since

R/ Jac(R) is a left S-ring, R is a left S-ring by Lemma 6.3. �

Not every semilocal ring is an S-ring. Indeed, the first author has an

example of a semilocal ring of Goldie dimension one (on both sides) which

is not an L-ring, [14]. Such a ring can be neither a left nor a right S-ring

(cf. Lemma 6.3).

However, if we add an extra condition, we do get the S-property. To this

end, call R homogeneous semilocal if R/ Jac(R) is a simple artinian ring.

For examples of such rings see Corisello and Facchini [2].

Example 6.5. Every homogeneous semilocal ring is a right and left S-ring.

Proof. Lemma 6.3 tells us that we need only prove that R is an L-ring.

By [2, Thm. 2.3] every projective right R-module P is a direct sum of

copies of a unique cyclic indecomposable projective R-module. Thus if P is

not finitely generated, then P/ Jac(R) is not finitely generated either. �

7. Commutative S-rings

In the commutative case things considerably simplify due to a result of

Vasconselos.
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Fact 7.1. [17, Cor. 1.7] Let R be a commutative ring such that every cyclic

flat R-module is projective. Then R is a right S-ring.

Thus, in the commutative case every a-sequence of square matrices con-

verges whenever every a-sequence of ring elements does.

Further, one easily reduces the general commutative case as follows to

that of rings without nontrivial idempotents.

Lemma 7.2. Let R be an I-finite ring such that all idempotents of R are

central. Then R is a finite direct sum ⊕n
i=1Ri of rings without nontrivial

idempotents. Moreover, R is an S-ring if and only if each Ri is an S-ring.

Proof. We say that a nonzero idempotent e ∈ R is an atom, if the ring

eRe = eR contains no nontrivial (other then 0 and e) idempotents.

It is easy to prove that two distinct atoms are orthogonal. Hence, there are

only finitely many atoms (for R is I-finite), say e1, . . . , en. If e = e1+· · ·+en,

then R = e1R⊕ · · · ⊕ enR⊕ (1− e)R is the desired decomposition.

It remains to invoke Lemma 3.8. �

Not all commutative rings without idempotents are S-rings, as we exem-

plify next.

Example 7.3. Let R be a commutative algebra over a field k with generators

x1, x2, . . . and relations xi+1xi = xi. Then

(1) R is reduced.

(2) R has no nontrivial idempotents.

(3) R is not an S-ring.

Proof. Every element r ∈ R has a canonical form f0+
∑k

i=1 fi, where f0 ∈ k,
and fi is a polynomial in xi whose free term is equal to zero, for all i ≥ 1.

(1) and (2). If n > 0 is the degree of fk in the above representation of

r ∈ R, then rm = g0 +
∑k

i=1 gk, where the degree of gk is equal to mn.

Hence neither r = r2 nor is r nilpotent.

(3) Clearly x1, x2, . . . is an a-sequence in R. If it stabilized, it would follow

that eventually either xi = 0, or xi = 1, a contradiction. �

Next we prove that a-sequences over commutative rings of Goldie dimen-

sion one behave like those over local rings, that is, we prove Lemma 2.2(2)

for the commutative Goldie dimension one case.
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Proposition 7.4. Every commutative ring of Goldie dimension one is an

S-ring. Moreover, every nonzero right a-sequence over such a ring is of the

form

(0, 0, . . . , 0, r, s, 1, 1, 1, . . .), where 0 ̸= r ∈ R and sr = r.

Proof. Assuming the contrary, we would have ring elements a1 ̸= 0, a2 ̸= 0, 1,

and a3 ̸= 1 such that (0, 0, . . . , 0, a1, a2, a3, 1, 1, 1, . . .) is a right a-sequence.

This would lead to a contradiction as follows.

From a2a1 = a1 it follows that (1 − a2)a1 = 0. Hence the annihilator of

(the nonzero element) 1− a2 in R is nonzero.

Similarly a3a2 = a2 implies (1−a3)a2 = 0, whence the annihilator of (the

nonzero element) a2 is nonzero as well.

Since R has Goldie dimension one, there is a nonzero s ∈ R such that

(1− a2)s = 0 and a2s = 0 (this is where commutativity is used). But then

s = (1− a2)s+ a2s = 0, a contradiction. �

The following fact is known, but it will be improved on below.

Fact 7.5. [17] Every semilocal commutative ring is an S-ring.

Proof. By Corollary 5.3 it suffices to prove that R/N is an S-ring, whereN is

the prime radical ofR. Thus we may assume that R is semilocal and reduced.

Then R is embedded into a finite product of local rings (localizations of R

with respect to maximal ideals).

Now every local ring is an S-ring, and every subring of an S-ring is an

S-ring. �

After Proposition 6.4 above we mentioned an example of a (non-commutative)

semilocal ring R of Goldie dimension one which is not an S-ring. Thus nei-

ther Proposition 7.4 nor Corollary 7.5 hold in general.

In order to generalize the previous result, let Max(R) denote the set of

maximal ideals of (the commutative ring) R endowed with the topology

induced by the Zariski topology on the prime spectrum of R. Then for

every a ∈ R, the set V (a) = {I ∈ Max(R) | a ∈ I} is closed, and every

closed set of Max(R) is an intersection of such sets.

Lemma 7.6. Let R be a commutative ring such that Max(R) has the a.c.c. or

the d.c.c on subsets of the form V (a), where a ∈ R. Then R is an S-ring.
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Proof. By Corollary 5.6 it suffices to prove that R/ Jac(R) is an S-ring.

Since R/ Jac(R) has the a.c.c. (the d.c.c.) on subsets of the form V (a) iff R

does, we may assume that Jac(R) = 0 from the very beginning.

Let a1, a2, . . . be an a-sequence over R. Put Vi = V (ai) and Wi = V (1−
ai). Then Vi ∩Wi = ∅, for if I ∈ Vi ∩Wi, then ai ∈ I, and 1− ai ∈ I, hence

1 ∈ I, a contradiction.

Further, Vi ∪Wi+1 = Max(R) for every i. Indeed, from (1− ai+1)ai = 0

it follows that for every I ∈ Max(R), either 1 − ai+1 ∈ I, i.e. I ∈ Wi+1, or

ai ∈ I, i.e. I ∈ Vi.

We see that W1 ⊆ W2 ⊆ . . . is an ascending chain:

Wi = Wi∩Max(R) = Wi∩(Vi∪Wi+1) = (Wi∩Vi)∪(Wi∩Wi+1) = Wi∩Wi+1 .

If Max(R) has the a.c.c. on subsets of the form V (a), then Wi = Wi+1 =

. . . for some i. We may assume that W1 = W2 = . . .. Then for every i,

Vi∪Wi+1 = Max(R) implies Vi∪Wi = Max(R). It follows that ai(1−ai) ∈ I

for every maximal ideal I, therefore ai(1− ai) ∈ Jac(R) = 0.

Thus every ai = ei is an idempotent. Aiming for a contradiction, we may

assume that all inclusions eiR ⊂ ei+1R are proper. But then R contains an

infinite set of orthogonal idempotents, which clearly violates the a.c.c.

If Max(R) has the d.c.c. on subsets of the form V (a), the argument is

analogous, using the descending chain V1 ⊇ V2 ⊇ . . . instead. �

Remark 7.7. The hypotheses on the topological space Max(R) in this propo-

sition are met once this space is artinian or noetherian; but we know already

that every one-sided noetherian rings are two-sided S-rings, see Proposi-

tion 5.8 and the remarks preceding it.

We conclude with two more examples. For the first one, recall that the

(total) quotient ring Q(R) of a commutative ring R is the localization of R

with respect to the set of all non-zero divisors. Endo [3] proved that if Q(R)

is semilocal, then R is an S-ring and asked if the converse were also true,

[3, p. 289]. The answer is no, as the next example shows.

Example 7.8. Consider the Z-Z-bimodule M = ⊕p Z/pZ and its trivial

extension R = {( z m
0 z ) | z ∈ Z, m ∈ M}. Then R is an S-ring, whose total

quotient ring Q(R) = R is not semilocal.
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Proof. Since Z is an S-ring, so is R, by Proposition 5.10. Further, since Z
is not semilocal, neither is R. But Q(R) = R. �

Example 7.9. There is a commutative S-ring which is a Goldie ring and

whose ring R2 of 2×2 matrices does not have the a.c.c. on right annihilators.

Proof. Kerr [9] constructed an example of a commutative Goldie ring R

(of Goldie dimension two) such that R2 does not have an a.c.c. on right

annihilators. Since R has the a.c.c. on annihilators, by Proposition 4.2, every

cyclic flat R-module is projective. Thus R is an S-ring by Fact 7.1. �
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