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A method for solution of systems of parabolic differential equations of heat conduction on the model
of thermal contact between two bodies with different thermophysical characteristics in the presence of
mixed boundary conditions in the plane of their contact has been suggested for the first time. The
case of contact of two semibounded bodies has been considered. In this case, a heat source of low
heat capacity acts in a circular region of finite radius on the contact surface, and beyond this region
the initial temperature is maintained during the whole period of heat transfer.

Let us assume that in a cylindrical coordinate system (r > 0, −∞ < z < +∞) with the origin of coor-
dinates taken in the plane of contact of the bodies under consideration it is required to solve the axisymmetric
problem for the system of two differential equations of heat conduction
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with the initial conditions

θ1 (r, z, 0) = θ2 (r, z, 0) = 0 ,   r ≥ 0 ,   − ∞ < z < ∞ , (3)
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here and in what follows the subscripts 1 and 2 refer to thermal characteristics of the first and second bodies
(in our case, these bodies are half-spaces), θi(r, z, τ) = Ti(r, z, τ) − T0 are the excess temperatures and Ti(r,
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z, τ) are the absolute temperatures of the corresponding bodies, T0 is the initial temperature of the bodies,
ai > 0 are the coefficients of thermal diffusivity of the corresponding bodies, r and z are the cylindrical co-
ordinates, and τ is the time variable.

In the contact plane z = 0, we have discontinuous mixed boundary conditions when the boundary
conditions of the fourth kind [1, p. 28] with a surface circular heat source of the density q(r, τ) are specified
in the region of the circle 0 < r < R and a constant initial temperature is maintained beyond this circle:

− λ1 
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 − λ2 

∂θ2 (r, 0, τ)
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 = q (r, τ) ,   0 < r < R ,   τ > 0 ; (6)

θ1 (r, 0, τ) = θ2 (r, 0, τ) ,   0 < r < R ,   τ > 0 ; (7)

θ1 (r, 0, τ) = θ2 (r, 0, τ) = 0 ,   R < r < ∞ ,   τ > 0 , (8)

where λi > 0 are the coefficients of thermal conductivity of the considered bodies.
We note that boundary condition (6) has the physical meaning that at any instant of time τ > 0 the

entire specific thermal power generated by a thin circular heat source of low heat capacity in the circle (0 <
r < R, z = 0) will consist of specific heat capacities q1(r, τ) and q2(r, τ) which refer to the corresponding

body at points of their thermal contact. Since it is known that q1(r, τ) = 
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 and q2(r, τ) =
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∂z
, the identity is obvious:

q (r, τ) = q1 (r, τ) + q2 (r, τ) ,   0 < r < R ,   τ > 0 . (9)

The system of equations (1)–(2) with conditions (3)–(5) can be solved (see, e.g., [2 (p. 481), 3] using
the corresponding integral Laplace and Hankel transforms. These solutions can be written in the form
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where, for brevity, the condition Re s > 0 for the complex parameter s of the integral Laplace transform
(L-parameter) here and in what follows is omitted and implied on default, J0(u) is the Bessel function of the
real argument of the first kind, and C

__
1(p, s) and C

__
2(p, s) are unknown analytical functions which are to be

determined; the Laplace transforms (L-transforms) of the corresponding excess temperatures are determined
by the formula
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Using the mixed boundary conditions (6) and (8), equality (9), and the form of the solutions (10) and
(11) at z = 0 in the corresponding ranges of variation of the cylindrical coordinate r, we come to the follow-
ing system of paired integral equations with the L-parameter:
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We note that in system (13)–(14) the values of the analytical L-transforms q
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but the corresponding sum of them is known in accordance with formula (9):
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We solve the paired integral equations from system (13)–(14) with the aid of the substitution
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i(t, s), i = 1, 2, are the new unknown analytical functions.
Similarly to [2, p. 184], we verify directly that for any choice of the functions ϕ
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(15) ensures the fulfillment of the second of the paired equations of the form (14) owing to the value of the
discontinuous integral (when 0 < t < R < r)
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Substitution of expression (15) into the first of the paired equations of the form (13) gives two inte-
gral equations with the L-parameter:
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Using the known relation pJ0(pr) = 
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[rJ1(pr)] for calculation of the internal integral in (17), having inte-

grated the left- and right-hand sides of the equations in (17) with respect to r going from 0 to r, and having
summed them up, we come to the integral equation
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We find the second integral equation for determination of the unknown functions ϕ
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i(t, s), i = 1, 2,
using the corresponding equality for L-transforms from the condition of conjugation of the excess tempera-
tures (7). With account for representations (10), (11), and (15) and the corresponding values [2, p. 176] of the
discontinuous integral (16), we have
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Then, in Eq. (19) we replace r by µ, multiply the left- and right-hand sides by the integrating factor
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I0(u) is the modified Bessel function of the first kind, 0 < r < t < R. In this case, in deriving Eq. (20) we
used the value of the discontinuous integral [4, p. 477]
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Differentiating both sides of Eq. (20) with respect to r, we apparently come to the formula
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from which it follows that the unknown analytical functions ϕ
__

i(r, s) for the problem under consideration must
be determined from (18) and (23) depending on the ratio of the coefficients of thermal diffusivity a1 and a2

of the considered semibounded bodies.
First, we consider the case a1 = a2 = a where (23) quite naturally yields the equality ϕ
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If in the last equation we use the integrating factor 
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resembles the Fredholm equation of the second kind
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As an example of the method of determination of the unknown functions ϕ
__

i(r, s), i = 1, 2, in the case
a1 ≠ a2 we consider here the variant a1 < a2.

Let us introduce the dimensionless parameter Kλ = λ1/λ2 into consideration. We substitute the corre-
sponding value of the function ϕ
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1(t, s) from Eq. (23) into the integral equation (18). Then, to determine the
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2(r, s) we obtain the integral equation with the L-parameter
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The methods of solution of the integral equations (25), (26), or (27) are suggested in [5] and are
described in the monograph [2, p. 207] in detail. Here, we only note that the most preferable method for
solving such integral equations is representation of the unknown function in the form of a functional series in
powers √ s .

Thus, for example, having determined the function ϕ
__

2(r, s) from (27), we find the function ϕ
__

1(r, s)
according to formula (23). Then, using formula (15), we find the values of C

__
i(p, s), i = 1, 2, and from formu-

las (10) and (11) we determine the L-transforms of the corresponding temperature fields θ
__

1(r, z, s) and θ
__

2(r,
z, s). Finally, using the formula of inversion of the Laplace integral, we find the inverse transforms θi(r, z, τ)
= L−1[θ

__
i(r, z, s)], i = 1, 2.
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