СВОЙСТВА КОНЦЕНТРИРОВАННЫХ РАСТВОРОВ СМЕСЕЙ ЦЕЛЛЮЛОЗЫ С СИНТЕТИЧЕСКИМИ ПОЛИМЕРАМИ В СИСТЕМЕ ХЛОРИД ЦИНКА — ВОДА

Д. Д. Гриншпан, Т. А. Савицкая, Г. Д. Бильяжевич, Л. А. Баран, Л. Г. Лущик, В. В. Романов

Ранее было показано [1], что способ получения гидратцеллюлозных волокон и нитей из растворов целлюлозы в водном растворе хлорида цинка весьма эффективен как на стадии растворения целлюлозы и получения ее прядильных растворов, так и на стадии переработки полученных растворов в нити и пленки.

Целью работы, описанной в данной статье, являлось определение полимеров, способных совмещаться с целлюлозой в водных растворах хлорида цинка, оптимальных условий получения совместных растворов и оценка их стабильности.

Для определения круга полимеров, пригодных для получения совместных растворов с целлюлозой (Ц) в водном растворе хлорида цинка, были использованы: поливиниловый спирт (ПВС), поливинилхлорид (ПВХ), поливиниллацетат (ПВА), полиметилметакрилат (ПММА), сополимеры полиакрилонитрила (ПАН), полиамид-Б (ПА-6) и полиамид-6,6 (ПА-6,6), диацетат (ДАЦ), триацетат (ТАЦ), фосфат целлюлозы (ФЦ), метоксипропил-, гидроксиэтил-, диэтиламинозетилцеллюлоза. Установлено, что ПВХ, ПВА, ПММА и полиамиды не растворяются в данном растворителе даже при нагревании. Для остальных полимеров оказалось возможным получение 1—8 %-ных совместных растворов с целлюлозой при различном соотношении компонентов.

Растворы готовили либо одновременно растворением обоих компонентов, либо раздельным растворением полимеров и последующим их сме-
шением. Установлено, что оптимальная концентрация водного раствора хлорида цинка, используемого для растворения как полимеров, так и целлюлозы, должна составлять 60—70 % (масс.).

При визуальном наблюдении за 3—6 %-ными растворами смесей целлюлозы — синтетический полимер в хлориде цинка в течение 1—30 сут при комнатной температуре и наиболее неблагоприятном для совмещения соотношения компонентов 50:50 четкие признаки фазового разделения не были обнаружены [2]. Увеличение продолжительности хранения приводило лишь к повышению вязкости смесевых растворов и их застудениванию. В результате термостатирования растворов при 50—70 °C (при этой температуре растворы обладают текучестью) в течение 35 ч четкое расслаивание на два слоя наблюдалось только в системе Ц—ПФЦ.

Визуальные признаки расслаивания не проявлялись при нагревании студней после длительного (>30 сут) хранения при +5 °C. Это указывает на то, что исследованные растворы обладают вследствие большой вязкости достаточно высокой кинетической устойчивостью. При этом истинная растворимость полимеров друг в друге невелика и составляет, например, для системы Ц—ПФЦ не более 3—5 %. Именно такое количество ПФЦ остается в Ц после высыхания его горячей водой из бикомпонентных пленок Ц—ПФЦ при соотношении 80:20, 60:40 и 50:50, полученных из водных растворов в хлориде цинка.

Что же касается стабильности растворов с точки зрения изменения вязкости во времени, то, например, для системы Ц—ПАН имели место следующие закономерности. При хранении растворов при комнатной температуре их вязкость не изменялась в течение 5 сут. При повышении температуры до 70 °C вязкость раствора Ц уменьшалась через 5 ч более чем в 3 раза, вязкость раствора ПАН не изменялась, а вязкость смеси Ц—ПАН в соотношении 50:50 уменьшилась в 1,5 раза. Степень поляризации целлюлозы при этом уменьшилась от 1200 до 550 как в индивидуальном растворе, так и в растворе смеси.

Ранее нами установлено [3], что при определенных условиях в растворах целлюлозы в водном растворе хлорида цинка возникают и разрастаются сферолитные образования кристаллосольватов. Поэтому представлялось целесообразным изучить особенности появления целлюлозных кристаллосольватов в присутствии ПАН, который, как мы выяснили, не способен к образованию подобных структур в водных растворах хлорида цинка. Для этого исследуемый раствор наносили между поверхностями двух стекол, зазоры между которыми тщательно парафинировали. Наблюдение за растворами (от 1 до 30—50 сут) проводили с помощью микроскопа марки «Ampliival» (ГДР) при увеличении в 25 раз.

В 5 %-ном растворе целлюлозы на следующие сутки после приготовления появлялись четкие сферолитные образования с характерным малыгинским крестом (рис. 1), причем с течением времени их количество и размеры увеличивались. Просмотр в поляризованном свете растворов Ц—ПАН в соотношении 90:10, 80:20, 70:30 и 50:50 показал, что при добавлении ПАН к Ц сферолитоподобные образования разной степени совершенства наблюдаются вплоть до 50 %-ного содержания ПАН в смеси (рис. 2). Этот факт, в отличие
от общепринятого в литературе [4], указывает на отсутствие у системы Ц-ПАН в водном растворе хлорида цинка гомогенности на молекулярном уровне, т. е. в данном случае истинный раствор Ц и ПАН не образуется, иначе в растворах Ц-ПАН не наблюдалась бы объёмистые структурные образования чисто целлюлозной природы.

Одновременно нами были исследованы реологические свойства концентрированных растворов Ц, ПАН и их смесей в водном растворе хлорида цинка при различном соотношении компонентов. Как показывают реограммы (рис. 3), все изучаемые растворы обладают аномалией вязкостных свойств. Введение небольших добавок (5—20 %) ПАН к Ц или Ц к ПАН приводит в первом случае к уменьшению, а во втором — к увеличению вязкостью растворов соответствующих исходных полимеров. Несколько необычно поведение растворов Ц-ПАН при соотношении 70:30 и 30:70. Реограммы этих растворов практически одинаковы и очень близки к кривой течения раствора Ц. Для этих растворов велики и значения темп-ть активации вязкого течения. Так, для 5 %-ного раствора целлюлозы $\Delta H = 61$ кДж/моль, а для смеси Ц-ПАН 115 кДж/моль. Для 5 %-ного раствора ПАН $\Delta H = 36$ кДж/моль, а для смеси Ц-ПАН (30:70) — 66 кДж/моль. Причем в обоих случаях значение ΔH одинаково увеличивается (в 1,9 раза) по сравнению с ΔH растворов исходных компонентов.

На лабораторной прядильной установке МУЛ-1 и прядильном стенде оценина пригодность растворов смесей Ц-ПАН к формированию. В качестве осадительной были апробированы следующие ванны: вода, вода — хлорид цинка, вода — изопропиловый спирт, вода — изопропиловый спирт — хлорид цинка. Температуру осадительной ванны варьировали от 5 до 50 °C. Установлено, что в случае растворов, содержащих 50 % Ц и более, лучшей для формования является осадительная ванна вода — изопропиловый спирт — хлорид цинка, а для растворов смесей с большим содержанием ПАН — ванна вода — хлорид цинка. В этих условиях оказалось принципиально возможным получение структурно-смешанных волокон с удовлетворительными физико-механическими характеристиками из совместных растворов целлюлозы и ПАН в водных растворах хлорида цинка. Так, прочность и увлажнение волокна при соотношении Ц:ПАН 90:10 составили соответственно 15,6 сН/текс и 14,2 %, при соотношении 10:90 — 25,2 сН/текс и 32,0 %.

Таким образом, в водные растворы Ц в хлориде цинка в качестве модифицированных добавок можно вводить ПАН, ПВС, производные целлюлозы. Такие растворы вследствие кинетической устойчивости пригодны для переработки в структуро-смешанных волокнах и пленках. Формирование сферолитных образований целлюлозы в растворах смесей целлюлозы с полимерами в водных растворах хлорида цинка можно использовать в качестве четкого признака несовместимости компонентов на молекулярном уровне.

Литература

2. Лущак Л. Г., Савицкая Т. А., Баран Л. А. и др. // Тез. докл. VI Всесоюз. конф. по физике и химии целлюлозы.— Минск. 1990. С. 78.
3. Лущак Л. Г., Гриншпан Д. Д., Воронков В. Г. // Высокомол. соед. Сер. Б. 1990. Т. 32. № 7. С. 566.

НИИ ФХП (Минск), Белорусский гос. ун-т (Минск), НПО "Химволокно" (Мытищи)