
ON THE ANALYTICITY OF THE SCHWARZ
OPERATOR WITH RESPECT TO A CURVE

LUCA PRECISO AND SERGEI V. ROGOSIN

Abstract. We consider the Schwarz operator T[·, ·] which assigns
to each pair (φ, f), where φ is a plane curve and f is a real-valued
function, a holomorphic function F in the domain D enclosed by φ
such that boundary values of <F coincide with f . We show that
T[φ, f ] depends real analytically on (φ, f) in a suitable sense and
in a Schauder space setting and we compute the first variations of
T with respect its variables.

1. Introduction

The classical Schwarz boundary value problem (see [8]) consists of
searching for a holomorphic function F in a (bounded or unbounded)
plane domain D by given boundary values f of the real part u =
<F of the function F . It is known ( [8, p. 210], [18, §30]) that the
solution of such problem is determined uniquely up to a pure imaginary
constant whenever f belongs to a suitable function space (e.g., f is
Hölder-continuous), and the boundary ∂D is a smooth simple curve.
Analogous result takes place for D being a multiply connected domain.
The operator which assigns to each given function f the solution of the
Schwarz problem (having prescribed imaginary part in a given point)
is called the Schwarz operator (see [8, p. 208]).

The Schwarz operator T depends in fact not only on the boundary
data f but also on the curve φ : T → ∂D encircling the domain D.
Then the operator T is a map of two independent variables φ and f .

The aim of our paper is to carry out the perturbation analysis of
the Schwarz problem, i.e. to study the regularity of the dependence of
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T[φ, f ] on the functional variable φ and f , in a Schauder space setting,
.

In the case of some simple curves the Schwarz operator can be rep-
resented in the explicit form. If, for instance, ∂D = T, i.e., ∂D is
the unit circle with the standard parametrization, then the Schwarz
operator has the following representation:

circle (1.1) (T[φ, f ])(z) ≡ 1

2πi

∫

T
f(σ)

σ + z

σ − z

dσ

σ
,

where φ ≡ idT, i.e., φ is the identity map on T and = T[φ, f ](0) = 0.
For a general simply connected domain D ≡ I[φ] enclosed by the Lya-
punov curve φ (i.e. of class C1,α), the Schwarz operator is determined
up to an imaginary constant by the formula

dom_s (1.2) (T[φ, f ])(z) ≡ 1

2π

∫

φ(T)

f(σ)
∂

∂ nσ

[
log

ω(z)− ω(σ)

1− ω(σ)ω(z)

]
|dσ|,

(see e.g. [20, p.30]) where ω(·) is a conformal mapping of the domain
I[φ] onto the unit disc U and the normal derivative eliminates the mul-
tivaluedness of the complex logarithm. Thus the explicit representation
can be found for those domains which are mapped explicitly onto the
unit disc.

The study of the regularity of certain nonlinear operators with re-
spect to functional variables is quite intensive in the recent years. The
questions we are discussing here are close to that on the regularity of
certain families of curves [26]. The latter are motivated by the appli-
cation in fluid mechanics (see, e.g., [25], [9]).

Among the results similar to ours we have to mention the classical
theorem by Rado [24], which asserts the continuity of the dependence
of the Riemann Map of a simply connected Jordan domain upon the
boundary curve in the topology of the uniform convergence. More re-
cently, Coifman and Meyer [6] have proved the analyticity of a nonlinear
operator associated to the conformal representation of an unbounded
simply connected domain having arc-length parametrized boundary
with the direction of the tangent vector described by a function of
class BMO. Later Wu [27] with advice of Coifman and with ideas of [6]
has obtained two analyticity statements for bounded domains with arc-
length parametrized boundary having certain symmetries.

By using a PDE approach and in the frame of Schauder spaces,
Lanza [13] has shown the analyticity of the operator h : (φ,w) 7→
g

(−1)
φ,w ◦ φ, where gφ,w is the conformal mapping of the unit disc U onto
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the bounded domain I[φ] enclosed by φ, which is normalized by the
conditions gφ,w(0) = w ∈ I[φ], g′φ,w(0) > 0. Later it has appeared that
the integral equation approach is more suitable to the study of the
operator h even in the case of doubly connected domains.

Lanza and Rogosin have discovered a system of integral-functional
equations for the operator h in the case of simply connected domains [16]
and doubly connected domains [17] and have shown on the base of these
systems that the operator h is real analytic in a Schauder space setting.

The systems of integral-functional equations mentioned above con-
tain the Cauchy integral operator

Cauchy (1.3) (C[φ, f ])(s) ≡ 1

2πi
p.v.

∫

T

f(σ)φ′(σ)

φ(σ)− φ(s)
dσ.

In connection with the study of the regularity of operators of the type
(1.3) we mention the contribution by Calderon, Coifman, Meyer, McIn-
tosh, David. Calderon [3, Thm. 1] has shown that if φ is a graph of a
Lipschitz function ψ, i.e., if φ(x) = x + iψ(x) with ψ′ ∈ L∞(R) and if
‖ψ′‖L∞(R) < ε for some ε > 0, then the linear integral operator with sin-

gular kernel φ′(y)
φ(y)−φ(x)

is an element of the space L (L2(R,C), L2(R,C))

of linear and continuous operators of L2(R,C) to itself. Then, by using
a standard argument of truncated kernel, one can deduce the analytic
dependence of the integral operator with kernel 1

φ(y)−φ(x)
upon ψ′ with

‖ψ′‖L∞(R) < σ with σ possibly less than 1 (cf., e.g., [5, p. 438]). Later,

Coifman, McIntosh and Meyer [4, Thm. 1], and David by different
method, [7, p. 178], have extended the validity of the same analyticity
result to the case in which ‖ψ′‖L∞(R) < 1.

To study the regularity of the dependence of T[φ, f ] on φ and f we
need to deal with functional variables having domains independent of
φ. Then we study the regularity of some variants of the Schwarz op-
erator. First we consider the modified Schwarz operator which maps
a simple closed curve φ with nonvanishing derivative and a real val-
ued function f of T to T[φ, p ◦ φ(−1)] ◦ φ. We represent the modified
Schwarz operator as a composition of operators whose regularity is
known. Then we prove the real analiticity of the modified Schwarz
operator by using the corresponding results for the singular (Cauchy)
integral operator (as stated in [15, Thm 3.16]), and for the operator

h : (φ,w) 7→ h[φ,w] = g
(−1)
φ,w ◦ φ (as stated in [16, Thm. 5.8]), where

gφ,w : U→ I[φ] is the Riemann Map of the unit disc U onto the domain
I[φ], which is normalized by the conditions gφ,w(0) = w, g′φ,w(0) > 0.
Moreover we calculate explicitly the first differential of the modified
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Schwarz operator. The regularity of other variants of the Schwarz op-
erator is considered but not all of them are real analytic.

The paper is organized as follows. In Section 2 we present basic
notation and auxiliary results. In Section 3 we introduce the modified
Schwarz operator. We show here the real analyticity of the modified
Schwarz operator and calculate its first differential. Section 4 is devoted
to the study of the regularity of another variant of the classical Schwarz
operator.

2. Preliminaries and notation

For standard definitions of calculus on normed spaces we refer, e.g.,
to Prodi and Ambrosetti [23] and to Berger [2]. In particular, a finite
product of normed spaces is endowed with the sup-norm of the norms
of its components. Further, any complex normed space can be viewed
as a real normed space. Accordingly, we will say that a map between
two complex normed spaces is real differentiable, real analytic or real
linear, respectively, if such a map has the corresponding property as
a map between the underlined real normed spaces. In a contrary, if
we are retaining the complex structure then we call a map with the
corresponding property as complex differentiable, complex analytic or
complex linear.

The inverse function of a function f is denoted f (−1) as opposed to
the reciprocal of a real- or complex-valued function g, which is denoted
by g−1.

We denote by U the open unit disc in C (or in R2), by T the boundary
of U. The unit circle T is usually counter-clockwise oriented. For any
set D ⊆ Rn we denote by cl D its closure, and by int D its interior.

The symbol < (=) denotes the function which takes a complex num-
ber z to its real (imaginary) part. If T is an operator into a subset of
complex-valued functions, then <T (=T) is the operator which maps
f to < ◦T[f ] (= ◦T[f ]).

Let Ω be an open subset of Rn. Let N be the set of nonnegative
integers including 0, and let m ∈ N. We denote by Cm(Ω,C) the set of
m-times continuously real differentiable complex-valued functions on
Ω and by Cm(cl Ω,C) the subspace of those functions f ∈ Cm(Ω,C)
such that, for all η ∈ Nn with |η| = η1 + . . . + ηn ≤ m, the func-

tions Dηf ≡ ∂|η|f
∂η1x1...∂ηnxn

can be continuously extended to cl Ω. If Ω

is a bounded open subset of Rn, we equip Cm(cl Ω,C) with the norm
‖f‖Cm(cl Ω,C) ≡

∑
|η|≤m

supcl Ω |Dηf |. The subspace of Cm(cl Ω,C) of those

functions whose m-th order derivatives are α-Hölder continuous with
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exponent α ∈]0, 1] is denoted by Cm,α(cl Ω,C). We endow Cm,α(cl Ω,C)
by the usual norm

‖f‖Cm,α(cl Ω,C) ≡
m∑

j=0

sup
cl Ω

|Djf |+sup

{ |Dmf(s)−Dmf(t)|
|s− t|α : s, t ∈ cl Ω, s 6= t

}
.

The spaces
(Cm(cl Ω,C); ‖f‖Cm(cl Ω,C)

)
and

(Cm,α(cl Ω,C); ‖f‖Cm,α(cl Ω,C)

)
are complex Banach spaces. If it clear on which domain these spaces
are defined then we will use the following short notation ‖ · ‖m and
‖ · ‖m,α for corresponding norms. If n = 2 we denote by H(Ω) the set
of the holomorphic functions of Ω. We denote (see e.g., [15, p. 367])

c[Ω] ≡ sup {λ(x,y)
|x−y| : x, y ∈ Ω, x 6= y}, where λ(x, y) ≡ inf {length of γ ∈

C1([0, 1], Ω) : γ(0) = x, γ(1) = y}. The open subset Ω of Rn is said
to be regular in sense of Whitney (or Whitney regular set), if Ω is
bounded and connected, and if c[Ω] < +∞. It is well known (cf., e.g.,
Jones [11, p. 73]) that if Ω is a bounded, connected, open subset of Rn

of class C1, then it is Whitney regular set.

Whitney Lemma 2.1. Let m, n, r, h ∈ N, let n, r, h ≥ 1, and let α, β ∈]0, 1].
Let Ω be an open Whitney’s regular subset of Rn. Then the following
holds.
(i) Cm+1(cl Ω,C) is continuously imbedded in Cm,α(cl Ω,C).
(ii) The pointwise product in Cm,α(cl Ω,C) is continuous and Cm,α(cl Ω,C)
is with this product a commutative Banach algebra with unity.
(iii) The reciprocal map in Cm,α(cl Ω,R), which maps a nonvanishing
function f to its reciprocal f−1, is complex analytic from the open subset
{f ∈ Cm,α(cl Ω,C) : f(x) 6= 0, for all x ∈ cl Ω} of Cm,α(cl Ω,R) to itself.
(iv) Let Ω1 be an open subset of Rr, regular in sense of Whitney.
If F ∈ Cm,α(cl Ω1,Rh) and if G ∈ Cm,β(cl Ω, cl Ω1), then F ◦ G ∈
Cm,γm(α,β)(cl Ω,Rh), with γ0(α, β) = αβ, and γm(α, β) = min {α, β}
if m > 0.
(v) Let m ∈ N,m ≥ 1. If G ∈ Cm,α(cl Ω,Rn) is injective and satis-
fies the condition DG 6= 0 for all x ∈ cl Ω, then G(Ω) is a bounded
connected open subset of Rn, G(cl Ω) = cl G(Ω), c[G(Ω)] < +∞, and
G(−1) ∈ Cm,α(cl G(Ω), cl Ω).

We refer for the proof of this Lemma to [15, Lem. 2.3].
We now define the Schauder spaces on plane Jordan curves, which

are particular compact subsets of C with no isolated points. With
somewhat more generality, we define the Schauder spaces on a general
compact subset K of C with no isolated points. We say that a function

f of K to C is complex differentiable at z0 ∈ C if limK3z→z0

f(z)−f(z0)
z−z0
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exists finite. We denote such limit by f ′(z0). As usual the higher
order derivatives, if they exist, are defined inductively. Let m ∈ N.
We denote by Cm

∗ (K,C) the complex normed space of the m-times
continuously complex differentiable functions f of K to C endowed
with the norm ‖f‖Cm∗ (K,C) =

∑m
j=0 supK |f (j)|. If α ∈]0, 1], we denote

by Cm,α
∗ (K,C) the subspace of Cm

∗ (K,C) of those functions having α-
Hölder continuous m-th order derivative in K. If f ∈ C0,α

∗ (K,C), then

we set |f : K|α ≡ sup
{
|f(z1)−f(z2)|
|z1−z2|α : z1, z2 ∈ K, z1 6= z2

}
. We endow

Cm,α
∗ (K,C) with the norm ‖f‖Cm,α

∗ (K,C) ≡ ‖f‖Cm∗ (K,C) + |f (m) : K|α. If
B ⊆ C, we set Cm,α

∗ (K, B) ≡ {f ∈ Cm,α
∗ (K,C) : f(K) ⊆ B}. If B is

an open subset of C a straighforward compactness argument implies
that Cm,α

∗ (K, B) is an open subset of Cm,α
∗ (K,C).

We denote by Cm,α,0
∗ (K,C) the closure of C∞

∗ (K,C) in Cm,α
∗ (K,C).

Then the following variant of [12, Cor. 4.24, Prop. 4.29] holds (cf. [15,
Lem. 2.5].)

AK Lemma 2.2. The following statements hold.

(i) Let φ ∈ C1
∗(T,C). Then lT[φ] ≡ inf

{
|φ(x)−φ(y)|
|x−y| : x, y ∈ T, x 6= y

}
>

0 if and only if φ is injective and φ′(ξ) 6= 0 for all ξ in T.
(ii) The function of C1

∗(T,C) to R which maps φ to lT[φ] is continuous,
and in particular, the set

Def.Z (2.3) Z ≡ {φ ∈ C1
∗(T,C) : lT[φ] > 0}

is open in C1
∗(T,C).

We have to note that a smooth curve is often defined as an equiva-
lence class of smooth parametrizations. However, for our purposes, it
is necessary to distinguish among the different parametrizations. Thus
we define a (closed) curve of class Cm,α on the complex plane C to be
a map φ belonging to Cm,α

∗ (T,C).
By a simple curve of class Cm,α we understand a curve φ of class Cm,α

and belonging to Z. A curve φ should not be confused with its locus
φ(T). Our perturbation analysis of the Schwarz problem will deal with
domains enclosed by a simple curve φ of class Cm,α with m ≥ 1, α ∈]0, 1[
(i.e. a Lyapunov curve). Let φ ∈ Z. By I[φ] we denote the bounded
connected component of C \ φ(T). Let w ∈ I[φ]. Let gφ,w be the
Riemann map of U to I[φ] normalized by the conditions

Norm.RM (2.4) gφ,w(0) = w, g′φ,w(0) > 0.

The same symbol gφ,w will be used also for the unique continuous ex-
tension to clU. It is well known that gφ,w is a homeomorphism between
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clU and cl I[φ] (cf. e.g. [22, Thms. 3.5, 3.6]). A classical Warschawski
result (cf. e.g. [22, Thm. 2.6]) implies that

Reg.RM (2.5) gφ,w ∈ Cm,α(clU,C), g′φ,w(z) 6= 0 ∀z ∈ clU

whenever φ ∈ Cm,α
∗ (T,C) ∩ Z with m ∈ N \ {0} and α ∈]0, 1[.

We are now ready to state the following, which collects a few facts
which we need on the spaces Cm,α

∗ (K,C). For a proof and for appro-
priate references, we refer to [15, Lems. 2.7, 2.8].

schauder Lemma 2.6. Let m ∈ N, α, β ∈]0, 1], φ ∈ Z, L = φ(T). Then the
following statements hold.
(i) Cm+1

∗ (L,C) is continuously imbedded in Cm,α
∗ (L,C). If α < β, then

Cm,β
∗ (L,C) is continuously imbedded in Cm,α

∗ (L,C).
(ii) The pointwise product is continuous in the Banach space Cm,α

∗ (L,C).
(iii) The reciprocal map R in Cm,α

∗ (L,C), which maps a nonvanishing
function f to its reciprocal, is complex analytic from the open subset
Cm,α
∗ (L,C \ {0}) of Cm,α

∗ (L,C) to itself. Moreover DR[f0][µ] = − µ
f2
0

for all f0 ∈ Cm,α
∗ (L,C \ {0}) and µ ∈ Cm,α

∗ (L,C).
(iv) Let φ1 ∈ Z, L1 = φ1(T). If f ∈ Cm,α

∗ (L1,C) and if g ∈ Cm,β
∗ (L, L1),

then f ◦ g ∈ C
m,γm(α,β)
∗ (L,C) with γ0(α, β) = αβ and γm(α, β) =

min{α, β} if m > 0.
(v) Let m ≥ 1. If g ∈ Cm,α

∗ (L,C) is injective and satisfies condition
g′(ξ) 6= 0, for all ξ ∈ L, then g(−1) ∈ Cm,α

∗ (g(L), L).
(vi) If I[φ] denotes the open bounded and connected component of C \
φ(T), then ∂I[φ] = φ(T).
(vii) Let φ ∈ Cm,α

∗ (T,C)∩Z. Then the trace operator R from Cm,α(cl I[φ],C)
to Cm,α

∗ (φ(T),C) defined by R[F ] = F/φ(T) is complex linear and con-
tinuous.
(viii) If f ∈ Z, and if f(T) ⊆ T, then f(T) = T and f is a homeomor-
phism of T to itself.

The following Theorem collects known facts about the singular (Cauchy)
integral and the Schwarz operator for the unit circle (cf. e.g. [8, §3-5,
pp. 44-46, 208-210, 248]).

Schw Theorem 2.7. Let m ∈ N, α ∈]0, 1[. Then the following statements
hold.
(i) Let φ ∈ C1,α

∗ (T,C) ∩ Z, L = φ(T). Then for all f ∈ Cm,α
∗ (L,C),

the singular integral

sch (2.8) Sφ[f ](τ) ≡ p.v.

πi

∫

φ

f(σ)

σ − τ
dσ =

p.v.

πi

∫

T

f(φ(η))φ′(η)

φ(η)− τ
dη,
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exists in the sense of the principal value for all τ ∈ L, and Sφ[f ](·) ∈
Cm,α
∗ (L,C). The operator Sφ defined by (2.8) is linear and continuous

from Cm,α
∗ (L,C) to itself and the equality (Sφ[g])′ = Sφ[g

′] holds for all
g ∈ C1,α

∗ (L,C). If φ coincides with the identity map idT, then we set
S ≡ Sφ.
(ii) Let ind [φ] be the index of the curve θ 7→ φ(eiθ), θ ∈ [0, 2π] with
respect to any of the points of I[φ]. Then for all f ∈ Cm,α

∗ (L,C), the
Cauchy type integral Cφ[f ] of C \ {L} to C defined by

Cφ[f ](z) ≡ ind [φ]

2πi

∫

φ

f(σ)

σ − z
dσ, ∀z ∈ C \ L,

is holomorphic. The function Cφ[f ]|I[φ] admits a continuous exten-
sion to cl I[φ], which we still denote by Cφ[f ] and we have Cφ[f ] ∈
Cm,α(cl I[φ],C) ∩ H(I[φ]). Moreover the Plemelj formula Cφ[f ](τ) =
1
2
f(τ) + ind [φ]

2
Sφ[f ](τ) for all τ ∈ L hold and C+

φ [·] defines a linear and
continuous operator of Cm,α

∗ (L,C) to Cm,α(cl I[φ],C). If φ coincides
with the identity map idT, then we set C ≡ Cφ.
(iii) For all f ∈ Cm,α

∗ (T,C), the function defined by

Schw1 (2.9) T[f ](z) ≡ 1

2πi

∫

T
f(t)

t + z

t− z

dt

t
, ∀z ∈ U,

and extended by continuity to clU belongs to Cm,α(clU,C)∩H(U). This
operator is called the Schwarz operator for the unit disc, while the in-
tegral in formula (2.9) is called the Schwarz integral for the unit disc.
Moreover the following formulas connect the Schwarz operator to the
Cauchy type operator and the singular (Cauchy) integral

Schw3 (2.10) T[f ](z) = 2C[f ](z)− 1

2πi

∫

T

f(t)dt

t
, ∀z ∈ U,

Schw5 (2.11)

T[f ](τ) = f(τ) + S[f ](τ)− 1

2πi

∫

T

f(t)dt

t
= f(τ)− iH[f ](τ), τ ∈ T,

for all f ∈ Cm,α
∗ (T,C) where H[f ](·) is the singular integral operator

with the Hilbert kernel

Hilb (2.12) H[f ](eis) ≡ 1

2π

2π∫

0

f(eiσ) cot
σ − s

2
dσ.
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In particular the operator T[·] is linear and continuos from Cm,α
∗ (T,R)

to Cm,α(clU,C).
(iv) For all f ∈ Cm,α

∗ (T,R), the function T[f ] determined by the for-
mula (2.9) is a solution of the following boundary value problem

Schw2 (2.13) < F (τ) = f(τ), τ ∈ T,

and satisfies =T[f ](0) = 0. The general solution of (2.13) in C0(clU,C)∩
H(Ω) is F = T[f ] + ic, where c ∈ R.

3. Real analyticity of some variants of the Schwarz
operator

In this section we carry out the perturbation analysis of the Schwarz
problem in a simply connected domain in the case of domains enclosed
by Lyapunov curves and of H older continuous boundary data. In this
Schauder space setting we obtain the real analyticity of some variants
of the Schwarz operator and we compute the first differential of one of
these operators.

Let φ be a simple (closed) curve of class C1,α with α ∈]0, 1[, f ∈
C0,α
∗ (φ(T),R) and let w ∈ I[φ]. The classical Schwarz problem consists

in searching for a complex-valued function of cl I[φ], holomorphic in
I[φ] and such that

Sch.bvp (3.1)

{
F ∈ C0(cl I[φ],C) ∩H(I[φ]),
< F (t) = f(t), ∀t ∈ φ(I), = F (w) = 0.

Let gφ,w be the Riemann map of I[φ] as in (2.4). By composition with
gφ,w it is not difficult to check that a function F satisfies problem (3.1)

if and only if the function F̃ ≡ F ◦ gφ,w satisfies the following problem
in clU

Sch.bvpU (3.2)

{
F̃ ∈ C0(clU,C) ∩H(U),

<F̃|T = f ◦ (gφ,w |T), =F̃ (0) = 0.

By (2.5), Lemma 2.6 (iv) and by Theorem 2.7 (iv), problem (3.2)
has a unique solution F̃ and F̃ ≡ F ◦ gφ,w is the unique solution of
(3.1). By (2.10) F satisfies the following formula

Sol.Schw. (3.3) F (z) =
1

πi

∫

T

(f ◦ gφ,w)(σ)

σ − g
(−1)
φ,w (z)

dσ − 1

2πi

∫

T

(f ◦ gφ,w)(σ)

σ
dσ

Let T be the operator from {(φ, f, w) ∈ (C1,α
∗ (T,C∩Z)×C0,α

∗ (φ(T),R)×
C : w ∈ I[φ]} to C0(cl I[φ],C) defined by
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Def.Schw.op. (3.4) T[φ, f, w] ≡ F,

where F is the unique solution of (3.1). We call this operator the
(classical) Schwarz operator. We should note that the Schwarz problem
is well-posed for classes of curves and boundary data more general that
those we consider here but we are not going to deal with those classes.
By (2.5), Lemma 2.6 (iv) and (vii), Theorem 2.7 (ii) and by Lemma
2.1 the following holds

Reg.Schw.sol. (3.5) T[φ, f, w] ∈ Cm,α(cl I[φ],C) ∩H(I[φ]),

for all φ ∈ Cm,α
∗ (T,C) ∩ Z, f ∈ Cm,α

∗ (φ(T),R), w ∈ I[φ] with m ∈
N \ {0} and α ∈]0, 1[.

To get regularity results about the dependence of T[φ, f, w] on (φ, f, w),
together with a description of the first variation with respect these vari-
ables, we have to tackle two difficulties. The first is about the choice of
a smooth variant of the Schwarz operator. Indeed we cannot study di-
rectly the operator T because the functions f and T[φ, f, w] are defined
in domains depending on φ. Then we introduce the modified Schwarz
operator which has functionals variables defined in fixed domains. The
modified Schwarz operator is obtained from the Schwarz operator by
describing the boundary data f and the solution T[φ, f, w] with their
composition with the curve φ. The second difficulty is to choose a
suitable representation of the modified Schwarz operator involving op-
erators having known regularity and whose first differentials can be
explicitely calculated. To tackle this difficulty we prefer to use the rep-
resentation (3.3) instead of (1.2). Indeed by using (3.3) the modified
Schwarz operator can be written in terms of the singular (Cauchy) in-
tegral operator C and of the operator h, and the regularity of both of
them is known in Schauder spaces (see Introduction).

In order to prove an analyticity result for the modified Schwarz oper-
ator and to compute its first differential we need the following Lemma.

Diff. Lemma 3.6. Let m ∈ N \ {0}, α ∈]0, 1]. Then Cm,α
∗ (T,C \ {0}) ∩ Z

is an open subset of Cm,α
∗ (T,C) and the operator G from Cm,α

∗ (T,C \
{0})∩Z to C defined by G[h] ≡ ∫

h(T)
p◦h(−1)(σ)

σ
dσ = Ind[h]

∫
T

p(η)h′(η)
h(η)

dη

is complex analytic. Moreover its first differential at h0 ∈ C1,α
∗ (T,C \

{0}) ∩ Z satisfies
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Diff.1 (3.7)

(DG[h0])[µ] =−
∫

h0(T)

µ ◦ h
(−1)
0 (σ)

σ
(p◦h(−1)

0 )′(σ))dσ = −Ind[h0]

∫

T

p′µ
h0

dσ

for all µ ∈ Cm,α
∗ (T,C).

Proof. Since C \ {0} is an open subset of C Cm,α
∗ (T,C \ {0}) is an

open subset of Cm,α
∗ (T,C). Then by Lemma 2.2 (ii) and Lemma 2.6

(i), Cm,α
∗ (T,C) ∩ Z and Cm,α

∗ (T,C \ {0}) ∩ Z are an open subsets of
Cm,α
∗ (T,C). Then the first By Lemma 2.6 (ii) and (iii) the operator

h 7→ p(·)h′(·)
h(·) is complex analytic from Cm,α

∗ (T,C \ {0}) to Cm−1,α
∗ (T,C)

and then G is complex analytic. By chain rule and Lemma 2.6 (iii)

the formula (DG[h0])[µ] = − ∫
T
[

pµ′
h0

+ pµ d
dη

(
1
h0

)]
dη holds for all µ ∈

Cm,α
∗ (T,C). Formula (3.7) follows by integrating by parts the second

addend of the integrand function just obtained and by carrying out the

substitution η = h
(−1)
0 (σ). ¤

Then we have the following.

An.T* Proposition 3.8. Let m ∈ N \ {0}, α ∈]0, 1[. Let

(3.9)
Am,α
∗ ≡ {(φ, p, w) ∈ (Cm,α

∗ (T,C) ∩ Z)× Cm,α
∗ (T,R)× C : w ∈ I[φ]} .

Let T∗ be the operator of Am,α
∗ to Cm,α(clU,C) defined by T∗[φ, p, w] ≡

T[φ, p ◦φ(−1), w]] ◦φ for all (φ, p, w) ∈ Am,α
∗ . Then the following state-

ments hold.
(i) The set Am,α

∗ is an open subset of Cm,α
∗ (T,C)×Cm,α

∗ (T,R)×C and
the operator T∗ is real analytic in its domain Am,α

∗ .

(ii) Let (φ0, p0, w0) ∈ Am,α
∗ , h0 ≡ g

(−1)
φ0,w0

◦ φ0, k0 ≡ h
(−1)
0 and let g0 ≡

gφ0,w0.
Then ∂T∗

∂p
[φ0, p0, w0][g] = T∗[φ0, g, w0] for all g ∈ Cm,α

∗ (T,R) and the

following formulas for the partial derivatives with respect φ and w hold.
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∂T∗
∂φ

[φ0, p0, w0][µ](t) =DTphi (3.10)

1

π

∫

T


h0(t)=(I−S)

[
<(I−S)[µ◦k0]

idTg′0

]
(h0(t))−σ=(I−S)

[
<(I−S)[µ◦k0]

idTg′0

]
(σ)

σ − h0(t)

(p ◦ k0)
′(σ)

]
dσ +

+
1

g′0(0)π2

∫

T


−h0(t)<

(
h0(t)

∫
T

µ◦k0(η)
η

dη
)

+ σ<
(
σ

∫
T

µ◦k0(η)
η

dη
)

σ − h0(t)

(p ◦ k0)
′(σ)

]
dσ +

+
1

2π

∫

T
=(I−S)

[<(I−S)[µ ◦ k0]

idTg′0

]
(σ)(p ◦ k0)

′(σ)dσ +

− 1

2g′0(0)π2

∫

T
<

(
σ

∫

T

µ ◦ k0(η)

η
dη

)
(p ◦ k0)

′(σ)dσ,

DTw (3.11)

∂T∗
∂w

[φ0, p0, w0](t) =
2

g′0(0)π

∫

T

h0(t)=(h0(t))− σ=(σ)

σ − h0(t)
(p ◦ k0)

′(σ)dσ +

+
1

g′0(0)π

∫

T
=(σ)(p ◦ k0)

′(σ)dσ,

for all µ ∈ Cm,α
∗ (T,C) and for all t ∈ T.

Proof. Let Em,α ≡ {(φ,w) ∈ (Cm,α
∗ (T,C) ∩ Z) × C : w ∈ I[φ]} and let

h be the operator of Em,α to Cm,α
∗ (T,C) defined by h[φ,w] ≡ g

(−1)
φ,w ◦ φ

for all (φ,w) ∈ Em,α. By formula (3.3) and by Theorem (2.7) (ii) the
boundary values of T∗[φ0, p0, w0] satisfies the following formula

T∗[φ, p, w](t) ≡ T[φ, p ◦ φ(−1), w]] ◦ φ =An.T*1 (3.12)

p(t) +
p.v.

πi

∫

T

p ◦ h[φ,w](−1)(σ)

σ − h[φ,w](t)
dσ − 1

2πi

∫

T

p ◦ h[φ, w](−1)(σ)

σ
dσ

for all t ∈ T and for all (φ, p, w) ∈ Am,α
∗ . In the notation of Lemma

2.7 (i) the second summand in (3.12) is equal to Sh[φ,w][p ◦h[φ, w](−1)].

By [15, Prop. 4.1] the operator (γ, p) 7→ Sγ[p◦γ(−1)]◦γ is (complex) an-
alytic from (Cm,α

∗ (T,C)∩Z)×Cm,α
∗ (T,C) to Cm,α

∗ (T,C). Moreover by
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[16, Thm. 5.4] the operator h is real analytic from Em,α
∗ to Cm,α

∗ (T,C).
Since the sum of analytic operators is an analytic operator, the second
summand in (3.12) depends real analytically on (φ, p, w). By Lemma
3.6 the third summand in (3.12) depends (complex) analytically on
(φ, p). Then T∗ is real analytic in its domain. We now prove state-
ment (ii).

By [15, Prop. 4.1 (i)] and by Lemma 3.6 the following formula holds

∂T∗
∂φ

[φ0, p0, w0][µ](t) =An.T*2 (3.13)

1

πi

∫

T

∂h
∂φ

[φ0, w0][µ](t)− ∂h
∂φ

[φ0, w0][µ](h
(−1)
0 (σ))

σ − h0(t)
(p ◦ h

(−1)
0 )′dσ +

+
1

2πi

∫

T

∂h
∂φ

[φ0, w0][µ](h
(−1)
0 (σ))

σ
(p ◦ h

(−1)
0 )′dσ

for all t ∈ T and for all µ ∈ Cm,α
∗ (T,C). We now compute ∂h

∂φ
[φ0, w0][µ]

by using [16]. In [16] Lanza & Rogosin introduced a functional equation
whose solution set coincides with the graph of h. Precisely let

D ≡
{

(φ,w, h) ∈ Cm,α
∗ (T,C)× C× Cm,α

∗ (T,C) :An.T*3 (3.14)

φ ∈ Z, w ∈ I[φ], Re

{
ind[h]

2πi

∫

T

φ(s)h′(s)
h2(s)

ds

}
> 0

}
,

They proved that D is an open subset of Cm,α
∗ (T,C)×C×Cm,α

∗ (T,C),
and that the triple (φ,w, h) ∈ D satisfies the operator equation

An.T*4 (3.15) P[φ,w, h] = 0,

with

P[φ,w, h] ≡ (Pl[φ,w, h])l=1,2,3,4 ≡An.T*5 (3.16)(
Re

{
φ(·)− ind[h]

πi
p.v.

∫

T

φ(s)h′(s)
h(s)− h(·) ds

}
,
ind[h]

2πi

∫

T

φ(s)h′(s)
h(s)

ds− w,

Im

{
ind[h]

2πi

∫

T

φ(s)h′(s)
h2(s)

ds

}
, h(·)h(·)− 1

)
,

if and only if h = h[φ,w]. They proved that P is a real analytic
operator from D to Cm,α

∗ (T,R)×C×R×Cm,α
∗ (T,C) and they studed

the solvability of the functional equation ∂h
∂φ

[φ0, w0][g] = B with B ∈
Cm,α
∗ (T,R)×C×R×Cm,α

∗ (T,C). By differentiating P[φ,w0,h[φ,w0] =
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0 with respect φ and [16, Lems. 3.11 and 4.1], for any µ ∈ Cm,α
∗ (T,C)

g = ∂h
∂φ

[φ0, w0][µ] is the unique solution of the functional equation

∂P

∂h
[φ0, w0, h0][g] = −∂P

∂φ
[φ0, w0, h0][µ] =An.T*6 (3.17)

(
−< (µ− S[µ ◦ k0] ◦ h0) ,

1

2πi

∫

T

µ ◦ k0(η)

η
dη,

−=
(

1

2πi

∫

T

µ ◦ k0(η)

η2
dη

)
.0

)

By using the explicit solution of ∂h
∂φ

[φ0, w0][g] = B given in [16, Prop.

5.3] and by (3.18) the following equality follows

∂h

∂φ
[φ0, w0][µ](k0(s)) = is

(
=(I−S)

[<(I−S)[µ ◦ k0]

idTg′0

]
(s)+An.T*7 (3.18)

=(I−S)

[
1

2πi

∫
T

µ◦k0(η)
η

dη,

idTg′0

]
(s) + c

)
,

for all s ∈ T, where c is a complex constant independent of s.
Since

An.T*8 (3.19) (I−S)

[
1

idTg′φ0,w0

]
(s) =

2

g′0(0)s
,

for all s ∈ T and since
∫
T(p◦h

(−1)
0 )′dσ = 0 formula of (3.10) follows. By

an analogous argument based again in the [16, Prop. 5.3] also formula
(3.11)can be obtained. ¤
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