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INTRODUCTION

There are three main stages of development in the
history of the theory of precedent�based recognition:

– the development of heuristic methods and algo�
rithms—both universal ones that are designed for
solving a wide spectrum of problems, and special
methods and algorithms aimed at processing of a given
type of information (for example, the algorithms
“nearest neighbor,” “test algorithm,” “Kora algo�
rithm,” and the Fischer discriminant);

– the development of parametric models and the
search for the best algorithms within fixed models (for
example, estimate evaluation models and neural net�
work models).

– the development of approaches to solving recog�
nition problems by sets of algorithms and by extension
of the existing models.

The development of the third stage is primarily
related to the algebraic theory of recognition, the fun�
damentals of which were developed by Yu.I. Zhuravlev
in the late 1970s [1, 2]. He introduced the definition of
a recognition algorithm as an algorithm that converts
original information on the classes and descriptions of
objects to be recognized into a matrix of binary
answers to the questions on the membership of an
object in each class (for simplicity, we assume that
algorithms do not fail). Then one can set up a problem
of recognition by a group of given algorithms in two
stages by means of logical correction: first, each algo�
rithm independently solves recognition problems for

objects from a given sample (i.e., it calculates a certain
Boolean matrix), and then a certain Boolean function
(a logical corrector) is applied to these Boolean matri�
ces, which calculates the final classification. There are
various approaches to the choice of the type of logical
correctors and various methods for searching these
correctors. Various methods of logical correction of
recognition algorithms are described in [3–5].

Zhuravlev also showed that an arbitrary algorithm
could be represented as a product (successive execu�
tion) of two algorithms: a recognition operator and a
decision rule. The recognition algorithm converts
original information and descriptions of objects to be
recognized into a number matrix. The decision rule
converts the number matrix into a binary matrix of
final answers. He showed that the crucial role is played
by the recognition operator. Over the sets of recogni�
tion operators, he defined algebraic operations that
allow one to construct algebraic extensions of the
given sets of operators in the form of operator polyno�
mials. The products of these operator polynomials and
a standard fixed threshold decision rule allow one to
construct new recognition algorithms, including cor�
rect algorithms (that recognize elements of a given test
sample without error). To date, necessary and suffi�
cient conditions for the existence of correct algorithms
and estimates for the degrees of operator polynomials
have been obtained in algebraic recognition theory [1,
2, 6, 7]. In the present paper, we describe some practi�
cal algorithms for constructing algebraic and logical
correctors that allow one to construct correct and
quasi�correct algorithms and their approximations.
We present examples of solving practical problems,
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including the results of comparison with known recog�
nition algorithms.

1. ALGEBRAIC AND LOGICAL CORRECTION 
OF THE SETS OF RECOGNITION 

ALGORITHMS

Following [1], we will use the following system of
notations and concepts. Consider a standard recogni�
tion problem with l classes K1, K2, …, Kl. Denote by
Pi(S) a predicate “S ∈ Ki” defined on the set {S} of
admissible objects. Suppose given a finite collection of

admissible objects  = { , …, }. We will use the

notation  =  ∩ Ki, i = 1, 2, …, l, and assume that

 ≠ ∅, i = 1, 2, …, l.

A matrix , where αij = Pj( ), is called an

information matrix of the collection  with respect to
the system of predicates P1, …, Pl. The row (αi1, …, αil)

is called the information vector of the object .

The recognition problem consists in finding the
information matrix  by the initial information

I on the classes and the sample  produced for recog�

nition. A real practical algorithm A(I, , …, ) =

 solves this problem with error:  ≠

 (here βij, βij ∈ {0, 1}, is the value of the predi�

cate Pj on the object  calculated by algorithm A). For
simplicity, we restrict ourselves to the case of absence
of recognition failures.

Suppose there is a set {A} of algorithms that convert

(I, , ), I ∈ {I},  ⊆ { }, into matrices A(I, ,

) = . The algorithm A is said to be correct for

the recognition problem if the equality A(I, , …,

) =  holds.

In [1], it was proved that each algorithm A ∈ {A}
can be represented as a successive execution (product)
of algorithms B and C (A = BC), where B(I, , …,

) = , αij are real numbers, C( ) =

, βij ∈ {0, 1}, B = B(A), and C = C(A).

The set {A} generates the sets {B} and {C}. The ele�
ments of {B} are called recognition operators, and the
elements of {C}, decision rules. The number matrices
B(I, , …, ) =  are called matrices of esti�
mates of objects for classes, or estimate matrices for
short.

A decision rule C is said to be correct on { } if, for

any finite collection  ⊆ { }, there exists at least one

S̃ ' S1' Sq'

K̃i S̃ '

K̃i

αij q l× Si'

S̃ '

Si'

αij q l×

S̃ '

S1' Sq'

βij q l× αij q l×

βij q l×

Si'

S1' Sq' S̃ ' S̃ ' S1'

Sq' βij q l×

S1'

Sq' αij q l×

S1'

Sq' αij q l× αij q l×

βij q l×

S1' Sq' aij q l×

S̃'

S̃' S̃ '

number matrix  such that C( ) =

.

In [1], Zhuravlev introduced the operations of
addition, multiplication, and multiplication by a sca�
lar on the set {B} of recognition operators, which allow
one to construct operators of the form B ' =  •

… • Bik, where B '(I, , …, ) = ,  =

 • … • , if Bit(I, , …, ) = .

Then we can consider the algorithms

A = B 'C*, (1)

where C* is the correct decision rule and the operators
B ' are constructed on the basis of the operators of
parametric recognition models. The construction of
algorithms of type (1) is called an algebraic correction
of the algorithms {A}.

Suppose there is a group of n recognition algo�

rithms A1, A2, …, An, Ak(I, , …, ) = , k =

1, 2, …, n. The sets of matrices { , k = 1, 2, …,

n, } define l Boolean functions fj(y1, y2, …, yn),
j = 1, 2, …, l, that are not everywhere defined. Here,

fj( , , …, ) = αij, i = 1, 2, …, q, and the function

fj(y1, y2, …, yn) is not defined on the other 2n – q sets.
The main problem consists in defining a function over
the entire discrete unit cube En so that additional
meaningfully justified conditions that guarantee a cer�
tain unique and optimal choice of such a function are
maximally satisfied. These functions are called logical
correctors.

In the present paper, we present the results of inves�
tigations related to the practical construction of alge�
braic and logical correctors for recognition algo�
rithms. Some of these correctors are integrated into
the software system RECOGNITION for intelligent
data analysis and recognition [8]. We illustrate the
results by comparing them with the example of a num�
ber of applied problems.

2. POLYNOMIAL CORRECTION ON THE BASIS 
OF MAXIMUM�HEIGHT TERMS

As mentioned above, the proof of the existence of a
correct polynomial over a family of estimate evalua�
tion algorithms (EEAs) is one of the main results of
algebraic theory of recognition [2]. However, the prac�
tical application of this theorem to the construction of
polynomial correctors gives rise to a few complicated
problems. First, one should construct a collection of
basic algorithms, which should be as stable as possible.
Next, one should minimize the complexity of the
polynomial, i.e., its degree and the number of terms.

aij q l× aij q l×

αij q l×

biBi1∑
S1' Sq' auv' auv'

biauv'i1

∑ auv' ik
S1' Sq' auv'it

q l×

S1' Sq' βij
k

q l×

βij
k

q l×

αij q l×

βi j
1 βi j

2 βi j
n
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For solving these problems, a new characteristic of the
algorithm, the so�called height, was introduced [9]:

where M1 is the set of correct (object, class) pairs, i.e.,
pairs in which an object belongs to a class, and M0 is
the set of incorrect pairs.

In [10, 11], a collection of methods was developed
for the optimization of the height of algorithms in the
EEA family with variable thresholds of the proximity
functions. In particular, the authors described an exact
method and a collection of fast approximate algo�
rithms whose comparative test was carried out on the
collection of specially generated samples [11].

Given a collection of basic algorithms B1, …, Bq

(without loss of generality, we assume that the basic
collection contains one algorithm for each test object
S1, …, Sq), we can easily construct a correct polyno�

mial C.

To minimize the degree of this polynomial, we sug�
gest using a gradient scheme. Let us write out the opti�
mization problem formally. For simplicity, consider
the case when classes do not intersect (although this is
not essential). The optimization is carried out with
respect to the variables k1, …, kq ∈ Z, ki > 0. We should

minimize the quantity  (or ); here, the fol�

lowing inequalities should be satisfied, which guaran�
tee the correctness of the polynomial, namely,

where K(Sj) is the class to which the jth test object
belongs, ||B(S)||d is the estimate of object S for the class
Kq by the operator B. We will construct the optimiza�
tion method according to the gradient principle.

(1) Take a first�degree polynomial as the initial
solution.

(2) If the correctness inequalities are satisfied, then
stop; otherwise go to step 3.

(3) In the case of the functional , increase by

one the degree of the term whose increase leads to the
correction of the maximal number of incorrect ine�
qualities, and then go to step 2.

In the case of the functional , we increase by

one the degree of the term whose increase leads to the
correction of the maximal number of incorrect ine�

Γj Si( )
i j,( ) M1∈
min Γ

v
Su( ),

u v,( ) M0∈
max–

ciBi

ki

i 1=

q

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

ki

i

∑ ki
i

max

ciBi

kiC Sj( )
i 1=

q

∑
K Sj( )

ciBi

kiC Sj( )
i 1=

q

∑
d

,>

j 1 … q, d, , K Sj( ),≠=

ki

i

∑

ki
i

max

qualities among all the terms whose degree is less than

 + 1, and then go to step 2.

It is easily seen that the method converges.
Originally, this scheme was developed for a spe�

cially constructed collection of EEAs; however, it can
easily be generalized for an arbitrary number of algo�
rithms that form a basis for a given test sample.

Nevertheless, the application of this scheme is
complicated by the high complexity of constructing
the basic collection of algorithms by known methods
(it is assumed that a collection of EEAs of maximum
height is used as a basis). Actually, we decided to give
up the correctness and use a collection of “good”
terms, whose height can easily (i.e., by fast approxi�
mate methods) be made positive. When solving a large
number of applied problems, we noted that algorithms
of large height on a given subsample tend to possess
good recognition quality in the neighborhood of the
objects of this subsample. As a result, we obtained an
EEA�polynomial method, which constructs a second�
degree polynomial over an EEA of the form

where Di, q is an EEA with a special proximity function
that is inversely proportional to the Euclidean distance
to the central object of the basic EEA.

3. CONSTRUCTION OF A POWER�LAW 
ALGEBRAIC CORRECTOR

Correctors of this type were introduced in [1, 2].
Let a certain model of algorithms {A} be given. Denote
the corresponding model of recognition operators by
{B}, and fix a decision rule c in the class of threshold
decision rules C(c0, c1), which, as is known, are correct
for c0 ≤ c1 (provided that recognition failures are elim�
inated). Then, power�law algebraic correctors in the
general form can be represented as

(2)

where γi is a real number (R), t is a natural number (N),
and the index (i, j) runs over a set of values that signif�
icantly depends on the problem to be solved. A pair (i,
j) is chosen from the set I = {1, 2, …, q} × {1, 2, …, l}.
The degree t of the corresponding recognition opera�
tor Bij is determined componentwise, i.e., in a linear
algebra that is commutative with respect to multiplica�

tion. Denote the matrices Bij = , where the
indices (u, v) belong to {1, 2, …, q} × {1, 2, …, l} and
run over the entire set of admissible values for every
fixed (i, j) ∈ I.

ki
i

max

BiDi q,

i 1=

q

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

C,

c � γijBij
t

i j,( )

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

,

buv
i j

q l×
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Model (2) is correct under not�too�stringent con�
ditions imposed on the results of recognition in {B}.
The number of recognition operators in (2) is redun�
dant in the general case. However, it is known precisely
that it is senseless to use more than q ⋅ l operators when
constructing (2), because the basis of the space Rql

consists of q ⋅ l matrices. We will consider this form of
the model to be canonical and present the above�men�
tioned correctness conditions for it.

We will need one more notation. The set of indices
I for a given information matrix  is obviously
divided into two subsets

Then, model (2) is correct provided that

(3)

moreover, in this case

(4)

where [x] is the integral part of the number x ∈ R and
(i0, j0) ∈ M1 is chosen from condition (3).

Of course, conditions (3) and (4) are sufficient
conditions. A specific feature of such a canonical
model is that one should construct operators satisfying
condition (3). The model constructed has drawbacks.
It may become unstable for sufficiently large t. Of
course, condition (3) is more constructive than the
condition for constructing the basis of the space Rql. A
certain analog of this condition was considered in [2,
12]. In these papers, the authors introduced the con�
dition of quasi�completeness and showed that models
{A} satisfying this condition exist. Obviously, these
models {A} satisfy condition (3). Nevertheless, in spite
of their feasibility, the condition of quasi�complete�
ness and condition (3) are redundant.

Below, we will show that a small modification of the
power�law corrector can make condition (3) less strin�
gent, while the degree t can be set equal to 1.

To this end, we introduce a matrix�inversion oper�
ation

in the space Rql; here E is the unit matrix with respect
to the commutative inversion of the space Rql.

We modify model (2) as follows:

(5)

αij q l×

M0 i j,( ) i j,( ) I∈ αi j = 0,{ }=

and M1 i j,( ) i j,( ) I∈ αi j = 1,{ }.=

i0 j0,( )∀ M1 Bij∃ B{ } bi0 j0

ij buv
i j

u v,( ) M0∈
max>( );∈ ∈

t c1ln c0ln–( )[≥

× bi0 j0,

i jln buv
ij

u v,( ) M0∈
maxln–( )

i j,( ) M1∈
min( )

1–
] 1,+

R∀ rij Rql rij 0≠( ) R 1–
 = rij

1–( )∈=

or E RR 1–=

c � γijB̃ij
t

i0 j0,( )
i j,( )

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

,

and define the operator (i0, j0) using the operation
of inversion (the index (i0, j0) belongs to I and is taken
from (3))

(6)

It is easily seen that, under condition (3) for the

operator Bij, the matrix (i0, j0) =  possesses the
following property:

(7)

Hence, condition (4) for this operator is rewritten
as

From the last inequality, we can easily find that, for

model (5) is correct for t = 1.

It is easily seen that condition (7) for the recogni�

tion operator (i0, j0) (6) is satisfied not only when
the operator Bij satisfies (3). In fact, this condition is
easily generalized to

(8)

which also implies (7) for the operator (6).

Thus, in model (5) one can get rid of the main
drawbacks of model (2). Condition (8) imposes much
less stringent conditions on the model of algorithms
{A}. Moreover, while in the first model it was relevant
to speak of the instability of the results, in model (5)
the correctness is achieved by the choice of an appro�
priate parameter β.

4. CONSTRUCTION OF A SECOND�DEGREE 
ALGEBRAIC CORRECTOR FOR A GIVEN 

COLLECTION OF ALGORITHMS

Suppose there is a certain set of recognition algo�

rithms A1, A2, …, An and a test sample  = { , …, }

with the information matrix . We assume that

the results of recognition of the objects A1, A2, …, An

are defined in the form of estimates for classes: At(Si) =

B̃ij

B̃ij i0 j0,( ) E β bi0 j0

ij E Bij–+( )
1–
.=

B̃ij b̃i0 j0

i j

b̃i0 j0

ij
1,=

b̃uv
ij

1 u v,( )∀ i0 j0,( ).≠<⎩
⎨
⎧

t c1ln c0ln–( )[≥

× 1 β bi0 j0

i j buv
i j–

u v,( ) i0 j0,( )≠
min+( )ln( )

i j,( ) M1∈
min( )

1–
] 1.+

β
c1

c0

��� 1–⎝ ⎠
⎛ ⎞ bi0 j0

ij buv
i j–

i j,( ) M1∈

u v,( ) i0 j0,( )≠

min
⎝ ⎠
⎜ ⎟
⎛ ⎞ 1–

,>

B̃ij

i0 j0,( )∀ M1 Bij∃ B{ } bi0 j0

ij buv
i j

u v,( ) M0∈
max≠( ),∈ ∈

S̃ ' S1' Sq'

αij q l×
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( , , …, ), At( ) = ,  ∈ [0, 1]. We
will seek a second�degree algebraic corrector

(9)

As a decision rule, we take the operator C*: (Γ1,
Γ2, …, Γl)  (β1, β2, …, βl), where βj =

.

For a given test sample, B'(I, , …, ) =  =

. The problem

consists in finding unknown values of the parameters xt

for which the matrix  is the best approximation

to the information matrix . After an obvious

change of notation

(10)

we solve the problem of finding an algebraic corrector
of the form (9) by the least squares method, as a prob�
lem of minimization of the quadratic residual between
the information matrix  and .

To guarantee the stability of the algebraic corrector,
it seems expedient to seek second�degree polynomials
that contain a small number of terms. To this end, we
should eliminate the least informative terms from the

sums Γij = x0 +  and take only one term from

among a few strongly correlated ones.

To construct correctors of the form of (10) with a
small number of terms, there exists the following mul�
tistep heuristic procedure.

Normalize the matrices , t = 1, 2, …, T,
and estimate the informativeness of the matrices I0 =

{1, 2, …, T}, ϕ0( , , …, ) =

.

Γi1
t Γi2

t Γil
t S̃ Γij

t
q l× Γi j

t

A x0 xtA
t xtA

ν t( )Aμ t( )
,

t n 1+=

N

∑+
t 1=

n

∑+=

where N n 1 n n 1+( )/2,+ +=

ν t( ) μ t( ), 1 2 … n., , ,=

1, Γj 0.5,≥

0, Γj 0.5.<⎩
⎨
⎧

S1' Sq' Γij q l×

x0 xtΓi j
t xtΓij

ν t( )Γij
μ t( )

t n 1+=

N

∑+
t 1=

n

∑+
q l×

Γij q l×

αij q l×

Γi j x0 xtaij
t
,

t 1=

T

∑+=

αij q l× Γij q l×

xtaij
t

t 1=

T

∑

aij
t

x0* x1* xT*

x0 xtaij
t

t 1=

T

∑ αi j–+
⎝ ⎠
⎜ ⎟
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2

j 1=

l

∑
i 1=

q

∑x0 x1 … xT, , ,
minarg

At step ν = 0, 1, 2, …, there is a set I
ν
 ⊆ {1, 2, …, T},

a residual

(11)

and a solution ( , , …, ), corresponding to the

set I
ν
, such that |ϕ0 – ϕ

ν
| ≤ ε.

Step ν + 1.
(1) Choice of a set of weakly correlated matrices

, t ∈  ⊆ I0, and solution of problem (11) with

respect to the parameters corresponding to .

(2) If  > ε, it is assumed that a solution

( , , …, ) corresponding to the set of indices I
ν

is found. Otherwise go to the next step.
Remark. The sequence I

ν
, ν = 1, 2, …, is con�

structed so that the algorithm is finite.
The normalization, estimation of informativeness,

correlation, and the choice of matrices are performed

as follows. Instead of the matrices , t = 1, 2, …, T,

we take matrices , t = 1, 2, …, T, that minimize

the criterion φ  = , t = 1, 2, …,

T, i.e., λt = . We

assume that the closer the matrix  is to the infor�
mation matrix of the sample, the more informative it
is.

Next, we assume that the matrices , t = 1, 2, …,
T, are already ordered in increasing quality criterion

φ  = , t = 1, 2, …, T (or φ  =

, t = 1, 2, …, T). Suppose there is a cer�

tain metric ρ for number matrices of dimension q × l
and that the parameter δ is fixed.

Then, we find an informative subset , t = 1,

2, …, τ, of different matrices of the set  = { , t =
1, 2, …, T} by the following rule.

Set  = . Eliminate from the set , t = 1,

2, …, T, all the matrices such that ρ( , ) ≤ δ,
t = 1, 2, …, T. Enumerate the remaining matrices

ϕν x0* xτ1
* … xτk

*, , ,( )

x0 xtaij
t

t I
ν

∈

T
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⎜ ⎟
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l

∑
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q

∑x0 x
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… x
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, , ,
minarg
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*
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again, and denote them as  = { , t = 1, 2, …, T1}.

Set  = . Eliminate from  all the elements

such that ρ( , ) ≤ δ,  ∈ . The process is

continued until it reaches the situation  = ∅. It is
convenient to choose the parameter δ as δ =

d , where 0 ≤ d ≤ 1 is a control parameter.

Ã
2

aij
t

bij
2 aij

1 Ã
2

bij
2 aij

t aij
t Ã

2

Ã
k

αi j

i j, 1=

q l,

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

5. CONSTRUCTION OF A GENERALIZED 
POLYNOMIAL ALGEBRAIC CORRECTOR

OF MINIMAL DEGREE

In [13, 14], a generalization of polynomial alge�
braic correctors is developed in which the degree of the
recognition operator is assumed to be a real number
rather than an integer. Below we give the main defini�
tions and the description of the algorithm for the prac�
tical construction of these correctors.

The generalized algebraic closure of a set of recog�
nition operators B* = {B1, B2, …, Bn} is the set

U B*( ) L B1

x1B2

x2…Bs

xs: Bi B*∈ xi, R i = 1 s, 1 s k≤ ≤,,∈{ }( ).=

The elements of this set are called generalized poly�
nomials over B*, and the terms of this polynomial are
called generalized monomials.

Similarly, the set (A*) of algorithms A = BC such

that B ∈ (B*) is called a generalized algebraic clo�
sure of A*.

Let a set of recognition operators (ROs) B* = {B1,
B2, …, Bn} be given. The degree of the generalized

monomial  is x1 + x2 + … + xs. The degree

of the generalized polynomial B ∈ (B*) is the maxi�
mum of the degrees of its constituent monomials. The
degree of the algorithm A = BC from the generalized
algebraic closure is the degree of the generalized poly�
nomial B.

Any polynomial over ROs is also a generalized
polynomial. The degree of the polynomial coincides
with the degree obtained when considering this poly�
nomial as a generalized one. All the main results
remain valid for the concepts introduced.

Suppose that, for the recognition problem, a col�
lection of ROs Bk is given that construct estimate

matrices Bk(Z) = , and the operator C is
defined by a standard threshold decision rule,

C( ) = {0,  ≤ c1; 1,  ≥ c2; Δ, c1 <  < c2},
which is defined by the parameters c1 and c2.

Remark. Without loss of generality, we will assume
that the parameters c1 and c2 satisfy the condition c1 +
c2 = 1. Otherwise, these parameters should be divided
by the sum c1 + c2.

Let us divide the elements of the answer matrix into
two sets,  = M0 ∪ M1, where Mi = {(u, v): βuv =
i}, q is the number of objects, and l is the number of
classes. A pair (u, v) ∈ M1 such that Γuv(B) > |Γij(B)|
for any (i, j) ∈ M0 is said to be a marked pair in B.
Denote the set of marked pairs in B by M(B). In fact,
this means that marked pairs are distinguished from all
the pairs (i, j) such that the object Si does not belong to
the class Kj.

U

U

B1

x1B2

x2…Bs

xs

U

Γk
uv

q l×

Γk
uv Γk

uv Γk
uv Γk

uv

βij q l×

A collection of ROs {Bk} is said to be regular if it
satisfies the following conditions.

• Each operator is admissible; i.e., there exists at
least one pair (u, v) ∈ M1 that is marked in B.

• Each operator is normalized; i.e., if (u, v) is

marked in B, then  ≥ 1; otherwise en  < 1.

• The system {Bk} is basic for Z; i.e., M1 =

.

Otherwise, the collection of operators is called
irregular.

Thus, operators that are not admissible are elimi�
nated from the original collection, and the remaining
operators are normalized. The normalization coeffi�
cients of the operators are defined by

If the system obtained is basic, then the resulting
polynomial operator is correct.

To determine the degrees of operators in a polyno�

mial of the form A =  � C(c1, c2), we intro�

duce the change of variables yk = ,  = ln ,

φuv( ) =  and solve the following optimization

problem:

Γk
uv Γk

uv

M Bk( )
k 1=

n

∪

Γ B( ) Γmin
1 B( )[ ]

1–
,=

where Γmax
0 B( ) Γij B( ) ,

i j,( ) M0∈
max=

Γmin
1 B( ) Γi j B( ) .

i j,( ) M B( )∈
min=

Bk

xk

k 1=

n

∑
⎩ ⎭
⎨ ⎬
⎧ ⎫

e
xk γk

uv Γk
uv

ỹ yk

γk
uv

k 1=

n

∑

U

φuv ỹ( ) c1, for any u v,( ) M0;∈≤

ỹ φuv ỹ( ) c2, for any u v,( ) M1;∈≥

0 yk M = ql, for any k = 1 n,≤ ≤⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

;=
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For any nonempty set of indices I = {i1, …, im} ⊆
{1, …, n}, consider the auxiliary optimization problem
RI = {  ∈ UI,   min} with the set of constraints

UI = {  ∈ U;  =  = … = ;  ≥ yk, k ∉ I}, which

is effectively solved by the method of linearization.
For problem RI, we introduce the following nota�

tion:

Let us describe an algorithm for searching solutions
that employs auxiliary problems.

• Consider an ordered set of collections H = {I: I ⊆
{1, 2, …, n}; I ≠ ∅}, which is ordered so that collec�
tions with lower cardinality precede the collections
with higher cardinality. Assign the initial value Fmin =
+∞.

• Take the first unconsidered collection I in H and
solve problem RI.

• Calculate the values of GI and FI. If FI < Fmin,
then assign Fmin = FI.

• If GI ≥ Fmin, then remove from H all the collec�
tions that contain a subcollection $I$.

• If not all the collections are considered in H, go
to step 2.

• The sought solution to problem R is a solution to
the auxiliary problem defined by the collection I* for
which FI* = Fmin.

If the collection of ROs is not basic, then, by solv�
ing the auxiliary problem, one should find a solution
that gives the least error; i.e., one should solve the
problem under the set of constraints

and find a minimal number ε for which the system is
consistent.

6. CONSTRUCTION OF A LOGICAL 
CORRECTOR ON THE BASIS 

OF THE POTENTIALS OF TEST OBJECTS

The algorithm is a modification of the general
approach of [3]. For an object S to be recognized, one
calculates its estimate for each class according to the

formula Γi(S) = ( , S), i = 1, 2, …, l.

The quantity Φt( , S) is called the value of the

potential function for the pair  and S. We will calcu�
late this quantity by one of the following methods:

R ỹ U yk min
k  = 1 n,

max,∈{ }.=

ỹ yi1

ỹ yi1
yi2

yim
yi1

FI ỹ RI( ) k; GI
k  = 1 n,

max ỹ RI( ) i1
.= =

Uε

φuv ỹ( ) c1 ε+ , for any u v,( ) M0;∈≤

ỹ φuv ỹ( ) c2 ε– , for any u v,( ) M1;∈≥

0 yk M = ql, for any k = 1 n,≤ ≤⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

,=

1

K̃i

������ Φi

t K̃i∈

∑ St'

St'

St'

(a) Φi( , S) =

or

(b) Φi( , S) = {the number of satisfied inequalities

(S) ≥ ( ), j = 1, 2, …, n}.

Here ( ) = .

The first method is called the monotonic potential
correction (it depends on the control parameter δ,
0 < δ ≤ 1), and the second method is called the weakly
monotonic potential correction.

A logical corrector, as a set of functions fj(y1, y2, …,

yn), j = 1, 2, …, l, is defined as follows: fi( (S),

(S), …, (S)) = .

7. EXPERIMENTAL INVESTIGATION 
OF TWO�LEVEL RECOGNITION SCHEMES 

WITH A LOGICAL CORRECTOR

We investigated an approach to the construction of
recognition algorithms that is based on two�level rec�
ognition schemes with a corrector and employs the
synthesis of reliable schemes consisting of unreliably
operating units. Two�level algorithms are, in a sense,
invariant with respect to the problem because, on the
first level, one can combine algorithms from different
models, thus increasing the reliability of the recogni�
tion procedure.

According to the general principles of constructing
two�level schemes, we can distinguish two logically
completed stages of the experiment [1]. At the first
stage, one solves test problems by algorithms from the
corrected collection, determines the accuracy of the
algorithms, and reveals the degree of statistical depen�
dence between them. As a measure of similarity
between algorithms, one uses a sample correlation
coefficient between the events that consist of correct
recognition of a random object.

Using the results of a fixed collection of algorithms,
one compiles the table

where αij, 1 ≤ i ≤ q, 1 ≤ j ≤ n, are elements of a classifi�
cation vector that correspond to the results of recogni�
tion of objects from a test sample by the algorithms and
βi are elements of the information vector that corre�
spond to the true classification of objects.

St'

1, βi
j S( ) βi

j S '( ), j = 1 2 … n, , ,≥{ } /n σ,≥

0, otherwise.⎩
⎨
⎧

St'

βi
j βi

j St'

βi
j St' βti

j

βi
1

βi
2 βi

n 1, Γi S( ) Γj S( ), j≥ 1 … l,, ,=

0, otherwise⎩
⎨
⎧

A β
α11…α1n | β1

… … … …
αm1…αmn | βm
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At the second stage, one analyzes the properties of
the corrector being tested. The main focus is placed on
the study of the effect of the statistical dependence
between algorithms on the quality of recognition.

The problems for the experiments were chosen
with regard to the difference in the subject fields and
the physical bases, as well as to the complexity of their
solution (the accuracy of algorithms for problems do
not satisfy the given requirements).

When choosing models of recognition algorithms,
we took into account their universality, familiarity, dif�
ference in construction principles, and simplicity of
implementation. By these principles, we chose algo�
rithm models of the following types: (1) estimate eval�
uation (EA), (2) nearest neighbors (NN), (3) potential
functions (PF), (4) separating surfaces (SS), and (5)
taxonomy (T).

In each model, we constructed one or several algo�
rithms for a specific problem; these algorithms dif�
fered in the set of optimizing parameters and in the
method of their determination. The training of the
recognition algorithms and the checking of the accu�
racy of their operation (for problems with a large vol�
ume of information) were carried out by the training
and test samples, respectively. The latter samples were
formed by a random partition of the entire set of
objects of the problem into two disjoint subsets. For
problems with a small number of objects, we used the
sliding exam method. As a result of the first stage, we
constructed tables  by the results of recognition
of test objects.

To carry out the experiments, the logical corrector
(the corresponding Boolean function) minimized the
empirical risk in the class of all Boolean functions.
Then we obtained a simple definition of a partial Bool�
ean function .

The first problem consisted in the classification of
the underlying surfaces of the Earth by aerospace
spectroscopy data [15, 16]. The set of objects of the
problem consisted of 300 spectrograms of the surface

A β

A β

water of two oceans (Atlantic and Pacific). Among the
features of the problem were the physical homogeneity
of the characteristics that describe the object of recog�
nition and the fact that the classes are not sharply dif�
ferent (underlying surfaces are of the same type).

The set of objects is randomly divided into two
samples (disjoint sets): a training sample, consisting
of 100 objects, and a test sample, consisting of
200 objects. The following heuristics were used to
solve the problem: EA1–EA4, PF1, PF2, NN1, NN2,
SS1, SS2, and T. After the stage of training, the accu�
racy of algorithms was estimated as the rate of correct
recognition of objects from the test sample. The accu�
racy of the algorithms as applied to Problem 1 is illus�
trated in Table 1.

The second problem consisted in the recognition of
oil�bearingness of some oilfields by the results of the
analysis of nearby water�bearing strata. There were 64
objects in total. Specific features of the problem are
the qualitative difference in the character of descrip�
tion of the objects and small volume of information.

The training and the accuracy estimate of the algo�
rithms were performed by the sliding exam method.
This approach is the most reliable under conditions of
small volumes of information. Seven algorithms were
used in the experiments on this problem: EA1–EA3,
NN, PF, SS, and T (see Table 2).

By the results of the algorithms, we compiled tables
of pair correlation coefficients on each test sample.
For problem 1, the results obtained are shown in
Table 3. As expected, the strongest correlation is
observed between algorithms of the same type. For
example, in Table 3, strongly related blocks form vari�
ants of the estimate evaluation, nearest neighbors, and
potential function algorithms. At the same time, the
correlation is insignificant for the heuristics PF2 and T
from different blocks.

Thus, the execution of the first stage of the experi�
ment makes it possible to form different sets of cor�
rectable heuristics and the corresponding tables 
for studying the properties of a logical corrector.

Using the data of Tables 3 and 4 for all the prob�
lems, we formed about 100 sets of algorithms and the
corresponding tables  with different quantitative
and qualitative characteristics. The training and the
accuracy estimate of the correctors were performed
with the use of the tables  by the sliding exam
method. We investigated the possibility of correcting

A β

A β

A β

Table 1

1 2 3 4 5 6 7 8 9 10 11

EA1 NN1 EA2 NN2 EA3 EA4 T SS1 PF1 PF2 SS2

Problem 1

0.74 0.74 0.77 0.73 0.64 0.81 0.80 0.62 0.72 0.69 0.79

Table 2

1 2 3 4 5 6 7

NN SS T EA1 EA2 EA3 SS

Problem 2

0.67 0.74 0.70 0.67 0.60 0.66 0.70
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collections with the minimum (maximum) possible
pair correlation coefficients between algorithms and
randomly formed collections with a certain average
value of statistical proximity. The accuracy of the
results obtained was compared with that of the best
algorithm in the collection and with the average accu�
racy of heuristics of the collection.

Under the experimental conditions, a further
increase in the volume of correctable collections gives
rise to algorithms with higher values of pair correlation
coefficients in these collections.

The results of the experiments allow us to conclude
that the formation of a collection of algorithms with
strong correlation rarely leads to an increase in the
accuracy of recognition compared with the accuracy

of the best algorithm. However, the application of
trainable correctors can be justified even in this case.
The accuracy of these correctors is higher than the
average accuracy of the algorithms of a collection,
which corresponds to the accuracy of an algorithm
randomly chosen from the collection.

In practice, one often cannot guarantee the inde�
pendent operation of some algorithms or precisely
estimate the degree of their independence. As a result,
correctable collections may contain algorithms with
different degrees of statistical proximity. Table 7 shows
the results of some experiments with such collections
by the example of Problem 1.

The analysis of the data shows that the correction
accuracy increases with n.

Table 3

1 3 5 8 2 4 6 9 10 7 11

1 1 0.63 0.81 0.68 0.40 0.44 0.60 0.20 0.40 0.23 0.47

3 1 0.50 0.52 0.38 0.38 0.50 0.32 0.20 0.26 0.54

5 1 0.65 0.50 0.54 0.46 0.07 0.09 0.12 0.33

8 1 0.36 0.39 0.48 0.18 0.06 0.09 0.42

2 1 0.97 0.66 –0.1 –0.2 0.03 0.07

4 1 0.63 0.06 0.15 0.08 0.49

6 1 0.12 0.01 0.23 0.32

9 1 0.83 0.13 0.54

10 1 0.08 0.37

7 1 0.05

11 1

Table 4

1 4 6 3 5 2 7

1 1 0.50 0.47 0.42 0.40 0.26 0.35

4 0.50 1 0.19 0.35 0.53 0.18 0.13

6 0.47 0.19 1 0.47 0.50 0.08 0.46

3 0.42 0.35 0.47 1 0.32 0.15 0.18

5 0.40 0.53 0.50 0.32 1 0.17 0.04

2 0.26 0.18 0.08 0.15 0.17 1 0.22

7 0.35 0.13 0.46 0.18 0.04 0.22 1

Table 5

n = 3 n = 5

Collection of correctable heuristics 2, 5, 7 2, 4, 7 2, 4, 6 2, 3, 4, 5, 7 2, 4, 5, 6, 7

Accuracy of the best heuristic 0.70 0.74 0.74 0.74 0.74

Average accuracy of the collection of heuristics 0.68 0.70 0.69 0.68 0.67

Logical corrector 0.77 0.81 0.77 0.80 0.81
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In this paper, we obtained experimental data on the
correlation of the results of recognition between algo�
rithms applied to real problems. Results of this kind
are obtained for the first time. Although one cannot
make valid conclusions based on a limited number of
experiments, these results are of great interest because
here correlation plays the role of a natural measure of
statistical proximity between algorithms.

When solving applied problems, as a rule, one
should guarantee that the following operations are
executed in the automatic mode:

• formation of training information for individual
problems;

• solution of an applied problem by individual
algorithms;

• enhancement of the reliability of recognition at
the expense of the combination of several algorithms
(a two�level recognition scheme with a corrector);

• comparative analysis of the efficiency of algo�
rithms, and some other operations.

These problems were solved within a software com�
plex, which can be considered as a testing area for rec�
ognition algorithms with a control system [17]. The
architecture of this complex consists of the following
basic parts: control subsystems, user programs, and a
data manager (DM).

The control subsystem organizes the operation of
the complex and controls the operation of its compo�
nents. The user programs implement specific recogni�
tion algorithms (an algorithm library) and perform
pre� and postprocessing of data. The database consists
of collections of data of the object file, an indexer, and
a subproblem file.

The software complex of this architecture was used
for organizing and carrying out an experiment on the

study of the properties of recognition algorithms con�
structed on the basis of a two�level scheme.

These types of experiments require considerable
expenses related to the preparation, storing, and
manipulation of various data. The functional capabil�
ities and the composition of the software technology
allow one to automate many routine processes and
increase the efficiency of experiments.

8. RESULTS OF PRACTICAL COMPARISON OF 
CORRECTORS AND ALGORITHMS

Comparison of various recognition algorithms and
the choice of new objects that are most promising for
recognition have always been central questions of this
field; however, these questions do not have a unique
answer. Each approach has its own preferences and
limitations, which depend on the length of the training
sample, the number of classes and features, the repre�
sentativeness of the description of each class, the type
of features, the compactness of the classes, correlation
of features, configuration of classes, etc. A method
that is the best for a certain applied problem may turn
out to be mediocre when applied to other problems. A
natural comparison criterion here is an estimate for
the number of applied problems for which a certain
method occupies leading positions. Table 8 below
illustrates such comparisons. For calculations, we used
the software system RECOGNITION into which the
methods listed below were integrated. A row of the
table corresponds to a recognition (correction)
method, and a column (except for the column N), to
an applied problem:

DT is an algorithm for voting by deadlock tests [1];
LR is an algorithm for voting by systems of logical

regularities [18];
BT stands for binary decision trees [19];

Table 6

N = 3 n = 5 n = 7

Collection of correctable heuristics 2, 4, 6 1, 5, 8 3, 9, 10 1, 2, 4, 5, 6 1, 3, 9, 10, 11 2, 3, 4, 5, 6, 9, 10

Accuracy of the best heuristic 0.74 0.67 0.70 0.74 0.74 0.74

Average accuracy of the collection
of heuristics

0.70 0.61 0.66 0.67 0.68 0.67

Logical corrector 0.74 0.67 0.71 0.74 0.75 0.74

Table 7

n = 3 n = 5 n = 7

Collection of correctable heuristics 1, 3, 4 4, 5, 6 1, 4, 5 1, 4, 5, 6, 7 1, 2, 3, 6, 7 1, 2, 3, 4, 5, 6, 7

Accuracy of the best heuristic 0.70 0.67 0.67 0.70 0.74 0.74

Average accuracy of the collection
of heuristics

0.68 0.64 0.65 0.66 0.69 0.68

Logical corrector 0.72 0.69 0.70 0.73 0.81 0.84



PATTERN RECOGNITION AND IMAGE ANALYSIS  Vol. 20  No. 2  2010

ALGORITHMS FOR ALGEBRAIC AND LOGICAL CORRECTION 115

FISHER is Fisher’s linear discriminant [20];
LM is a linear machine [20];
MSV is a method of support vectors [21];
NeurC is a multilayer perceptron [22];
Vote is a collective solution as majority voting [8];
LogC is a logical corrector (Section 6);
AlgC is a second�degree algebraic corrector (Sec�

tion 4);
GenC is a generalized algebraic corrector (Section

5);
“Abalone” is the problem of determining the age of

abalone, l = 3, q = 2079, n = 8 (data are supplied by
Sam Waugh (Sam.Waugh@cs.utas.edu.au), Depart�
ment of Computer Science, University of Tasmania,
GPO Box 252C, Hobart, Tasmania 7001, Australia);

“Eco” is the protein localization problem, l = 8,
q = 179, n = 7 [23];

“Breast” is the mammary gland cancer diagnosis
problem, l = 2, q = 355, n = 9 [24];

“Credit” is the credit card endorsement problem
l = 2, q = 348, n = 15 [25];

“Home” is the problem of assessing housing prices,
l = 5, q = 264, n = 13 [26];

“Image” is the problem of recognition of standard
images, l = 7, q = 2100, n = 16 [25];

“Ion” is the radio signal recognition problem, l =
2, q = 182, n = 34 [27];

“Pnevmo” is the problem of assessing the degree of
severity of pneumonia, l = 4, q = 57, n = 41;

“Year” is the protein localization sites problem, l =
10, q = 747, n = 8 [23].

Columns 2–10 show estimates for the recognition
accuracy of various methods (percentage of correctly
recognized objects in a certain sample) in different
problems. For each problem, the table presents the
number of classes, the number of objects to be recog�
nized, and the number of features. Note that the
parameters of the algorithms were used by default (i.e.,
they were specified automatically), rather than chosen
from the training data (for example, by the minimiza�
tion of the number of errors on the training data in the
sliding test mode). Boldface numbers in each table
show the four best results, the prize�winning places.
The column N indicates how many times an appropri�
ate method took a prize�winning place.

The results of testing the EEA�polynomial method
are presented in Table 9.

The interpretation of the problems is given in [25]
and, in part, in [8].

9. CONCLUSIONS

In this paper, we have presented some practical
methods of algebraic and logical correction of heuris�
tic recognition algorithms, as well as the results of their
comparison. Although the number of practical prob�
lems was small, the results obtained provide a good
illustration of the expediency of using correcting algo�
rithms for increasing the reliability of the results of
recognition. This is especially important when recog�
nition software is used by unqualified personnel in the
automatic mode.

Table 8

Method/problem Abalone Eco Breast Credit Home Image Ion Pnevmo Year N

DV 60.6 63.1 92.4 85.3 63.3 86.5 87.9 61.4 44.3 2
LR 56.8 61.5 96.1 82.8 71.6 90.8 90.1 59.6 13.9 1
BT 56.7 73.2 92.1 85.1 67.4 90.2 87.4 57.9 45.2 1
Fisher 62.4 77.1 94.4 84.8 76.5 89.4 83.5 54.4 53.8 2
LM 65.5 79.3 94.9 85.9 61.7 92.7 86.8 54.4 32.0 5
MSV 66.5 81.6 94.6 83.3 77.7 91.8 94.0 63.2 65.5 6
NeurC 64.7 80.4 95.5 82.8 73.5 92.0 87.9 57.9 59.7 3
Collective

Vote 63.5 79.3 94.9 82.2 76.5 93.9 93.4 57.9 48.3 4
LogC 65.4 76.5 95.2 84.8 78.8 94.0 90.7 68.4 58.8 7
AlgC 65.0 81.6 95.2 81.0 76.9 92.3 91.2 61.4 60.6 7
GenC 63.5 80.4 94.9 82.8 78.0 94.3 94.0 66.7 61.2 7

Table 9

Task AVO�polynom

Abalone 62.3

Breast canser 96.1

Ionosphere 98.7

Echocardiogram 77.4

Hepatitis 88.0

Image 89.4

Credit 86.2
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